It is 1 because if you divided 7over 7 it 1 so x=1
In a pack of 52 cards, there are 3 square numbers - 1, 4, and 9.
1 × 1 = 1
2 × 2 = 4
3 × 3 = 9
Can you help me by answering my newest question??
Answer: see proof below
<u>Step-by-step explanation:</u>
Use the following Sum to Product Identities:

<u>Proof LHS → RHS</u>





![\text{Sum to Product:}\qquad \dfrac{\cos 10\bigg[2\cos \bigg(\dfrac{15+25}{2}\bigg)\sin \bigg(\dfrac{15-25}{2}\bigg)\bigg]}{\cos 20\bigg[-2\sin \bigg(\dfrac{15+5}{2}\bigg)\sin \bigg(\dfrac{15-5}{2}\bigg)\bigg]}](https://tex.z-dn.net/?f=%5Ctext%7BSum%20to%20Product%3A%7D%5Cqquad%20%5Cdfrac%7B%5Ccos%2010%5Cbigg%5B2%5Ccos%20%5Cbigg%28%5Cdfrac%7B15%2B25%7D%7B2%7D%5Cbigg%29%5Csin%20%5Cbigg%28%5Cdfrac%7B15-25%7D%7B2%7D%5Cbigg%29%5Cbigg%5D%7D%7B%5Ccos%2020%5Cbigg%5B-2%5Csin%20%5Cbigg%28%5Cdfrac%7B15%2B5%7D%7B2%7D%5Cbigg%29%5Csin%20%5Cbigg%28%5Cdfrac%7B15-5%7D%7B2%7D%5Cbigg%29%5Cbigg%5D%7D)
![\text{Simplify:}\qquad \qquad \dfrac{\cos 10[2\cos 20\sin (-5)]}{\cos 20[-2\sin 10\sin 5]}\\\\\\.\qquad \qquad \qquad =\dfrac{-2\cos10 \cos 20 \sin 5}{-2\sin 10 \cos 20 \sin 5}\\\\\\.\qquad \qquad \qquad =\dfrac{\cos 10}{\sin 10}\\\\\\.\qquad \qquad \qquad =\cot 10](https://tex.z-dn.net/?f=%5Ctext%7BSimplify%3A%7D%5Cqquad%20%5Cqquad%20%5Cdfrac%7B%5Ccos%2010%5B2%5Ccos%2020%5Csin%20%28-5%29%5D%7D%7B%5Ccos%2020%5B-2%5Csin%2010%5Csin%205%5D%7D%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D%5Cdfrac%7B-2%5Ccos10%20%5Ccos%2020%20%5Csin%205%7D%7B-2%5Csin%2010%20%5Ccos%2020%20%5Csin%205%7D%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D%5Cdfrac%7B%5Ccos%2010%7D%7B%5Csin%2010%7D%5C%5C%5C%5C%5C%5C.%5Cqquad%20%5Cqquad%20%5Cqquad%20%3D%5Ccot%2010)
LHS = RHS: cot 10 = cot 10 
PART A - So the ruler is 22.86 centimeters tall, and after measuring with an inch ruler, is also 9 inches tall.
ruler = 22.86cm
ruler = 9 in
You can equate 22.86cm and 9in because they both equal the length of the ruler (transitive property).
22.86cm = 9in
Then you can write a proportionality equation.
Part B -
Cross multiplying,
Part C - We can use something called dimensional analysis - multiplying 12 cm by (1in/2.54cm) - in order to change the units from inches to cm. This is possible because 1in = 2.54cm, the fraction 1in/2.54cm = 1. And also the units cm will cancel out.