1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
djyliett [7]
3 years ago
14

Fill in the missing expression

Mathematics
1 answer:
padilas [110]3 years ago
5 0

Answer:

The complete table is:

[ 5a ]           +    [ a + 3 ]      +    [ 4a ]     =    [ 10a + 3 ]

  +                         +                    +                    +

[ 2b ]          +     [ 4 + a ]      +     [ -a  ]     =    [  2b + 4 ]

  +                       +                     +                    +

[ 2a ]          +    [ a + 1 ]       +   [  -3a  ]    =   [     1      ]

  =                      =                     =                     =

[ 7a + 2b ]  +   [ 3a + 8 ]    +     [   0   ]    =   [10a + 2b + 8 ]

Explanation:

You can determine the content of each box by subtraction, running the rows and the columns.

The expressions are:

[ 5a ]  +    [          ]   +    [ 4a ]     =    [ 10a + 3 ]

  +                +                +                    +

[ 2b ]  +   [ 4 + a ]   +     [      ]     =    [              ]

  +              +                   +                    +

[      ]   +   [         ]   +      [  -3a  ]  =   [     1      ]

  =               =                   =                   =

[      ]  +   [ 3a + 8 ]  +  [         ]    =   [10a + 2b + 8 ]

<u>1. First row:</u>

[ 5a ]  +    [          ]   +    [ 4a ]     =    [ 10a + 3 ]

[      ] = [10a+ 3]  - [ 4a ] - [ 5a ] = 10a - 4a - 5a + 3 = a + 3

<u>2. Second colum:</u>

[ a + 3 ] + [ 4 + a ] + [       ] =  [ 3a + 8 ]

[        ] = [ 3a + 8 ] - [ a + 3 ] - [ 4 + a ] = 3a - a  + a  + 8 - 4 - 3 = a + 1

So far, you have completed this:

[ 5a ]  +    [ a + 3 ]   +    [ 4a ]     =    [ 10a + 3 ]

  +                +                +                    +

[ 2b ]  +   [ 4 + a ]   +     [      ]     =    [              ]

  +              +                   +                    +

[      ]   +   [ a + 1 ]   +     [  -3a  ]  =   [     1      ]

  =               =                   =                   =

[      ]  +   [ 3a + 8 ]  +  [         ]    =   [10a + 2b + 8 ]

<u></u>

<u>3. Complete the row 3:</u>

<u></u>

     [      ]   +   [ a + 1 ]   +      [  -3a  ]  =   [     1      ]

    [      ]   =    [     1      ]   -   [ a + 1 ]   -    [  -3a  ]  = - a + 3a + 1 - 1 = 2a

So far, you have completed this:

[ 5a ]  +    [ a + 3 ]   +    [ 4a ]     =    [ 10a + 3 ]

  +                +                +                    +

[ 2b ]  +   [ 4 + a ]   +     [      ]     =    [              ]

  +              +                   +                    +

[   2a   ]   +   [ a + 1 ]   +     [  -3a  ]  =   [     1      ]

  =               =                   =                   =

[      ]  +   [ 3a + 8 ]  +  [         ]    =   [10a + 2b + 8 ]

<u></u>

<u>4. Complete the fourth column:</u>

[ 10a + 3 ] + [    ] + [   1   ] = [10a + 2b + 8 ]

[    ] = 10a + 2b + 8 - 10a - 3 - 1 = 2b + 4

So far, this is the results:

[ 5a ]  +    [ a + 3 ]   +    [ 4a ]     =    [ 10a + 3 ]

  +                +                +                    +

[ 2b ]  +   [ 4 + a ]   +     [      ]     =    [  2b + 4 ]

  +              +                   +                    +

[   2a   ]   +   [ a + 1 ]   +     [  -3a  ]  =   [     1      ]

  =               =                   =                   =

[      ]  +   [ 3a + 8 ]  +  [         ]    =   [10a + 2b + 8 ]

<u>5. Complete the second row:</u>

[ 2b ]  +   [ 4 + a ]   +     [      ]     =    [  2b + 4 ]

 [      ]   =   [  2b + 4 ] - [ 2b ]  -   [ 4 + a ]  = 2b - 2b + 4 - 4 - a = - a

So far:

[ 5a ]  +    [ a + 3 ]      +    [ 4a ]     =    [ 10a + 3 ]

  +                +                    +                    +

[ 2b ]  +   [ 4 + a ]      +     [ -a  ]     =    [  2b + 4 ]

  +               +                     +                    +

[   2a   ]   +   [ a + 1 ]   +   [  -3a  ]  =   [     1      ]

  =               =                    =                   =

[      ]  +   [ 3a + 8 ]  +     [         ]    =   [10a + 2b + 8 ]

<u>6. Complete the first colum:</u>

[ 5a ] + [ 2b ] + [2a ] = [   ]

[   ] = [ 7a + 2b ]

So far:

[ 5a ]           +    [ a + 3 ]      +    [ 4a ]     =    [ 10a + 3 ]

  +                         +                    +                    +

[ 2b ]           +   [ 4 + a ]      +     [ -a  ]     =    [  2b + 4 ]

  +                       +                     +                    +

[ 2a ]          +   [ a + 1 ]       +   [  -3a  ]    =   [     1      ]

  =                      =                     =                    =

[ 7a + 2b ]  +   [ 3a + 8 ]   +     [         ]    =   [10a + 2b + 8 ]

<u>7. Complete the last row:</u>

[ 7a + 2b ]  +   [ 3a + 8 ]   +     [         ]    =   [10a + 2b + 8 ]

[         ]    =   [10a + 2b + 8 ] - [ 7a + 2b ] - [ 3a + 8 ] = 0

The complete table is:

[ 5a ]           +    [ a + 3 ]      +    [ 4a ]     =    [ 10a + 3 ]

  +                         +                    +                    +

[ 2b ]           +   [ 4 + a ]      +     [ -a  ]     =    [  2b + 4 ]

  +                       +                     +                    +

[ 2a ]          +   [ a + 1 ]       +     [ -3a  ]    =   [     1      ]

  =                      =                     =                     =

[ 7a + 2b ]  +   [ 3a + 8 ]    +     [   0  ]     =   [10a + 2b + 8 ]

You might be interested in
A line passes through the point (-4, -8) and has a slope of 5/2 write an equation in slope intercept form for this line
Tju [1.3M]

Answer:

y = 5x/2 + 2

Step-by-step explanation:

We know the equation for slope-intercept form is y = mx + b, where m is the slope and b is the y-intercept. Since we have the coordinates of one point on this line and the slope, we can substitute that in and find b first:

y = mx + b

-8 = 5/2(-4) + b

-8 = -10 + b

b = 2

So we can use the slope and this y intercept we found to plug back into the equation:

y = mx + b

y = 5x/2 + 2

4 0
2 years ago
Hi can I have help please tysm!
Tems11 [23]

Step-by-step explanation:

7 + 21 \\  \\  = 7(1 + 3) \\  \\ is \: the \: answer

8 0
2 years ago
Convert -18° to radians.
Fiesta28 [93]
0.314159


Is the answer
5 0
3 years ago
(A) A small business ships homemade candies to anywhere in the world. Suppose a random sample of 16 orders is selected and each
Leviafan [203]

Following are the solution parts for the given question:

For question A:

\to (n) = 16

\to (\bar{X}) = 410

\to (\sigma) = 40

In the given question, we calculate 90\% of the confidence interval for the mean weight of shipped homemade candies that can be calculated as follows:

\to \bar{X} \pm t_{\frac{\alpha}{2}} \times \frac{S}{\sqrt{n}}

\to C.I= 0.90\\\\\to (\alpha) = 1 - 0.90 = 0.10\\\\ \to \frac{\alpha}{2} = \frac{0.10}{2} = 0.05\\\\ \to (df) = n-1 = 16-1 = 15\\\\

Using the t table we calculate t_{ \frac{\alpha}{2}} = 1.753  When 90\% of the confidence interval:

\to 410 \pm 1.753 \times \frac{40}{\sqrt{16}}\\\\ \to 410 \pm 17.53\\\\ \to392.47 < \mu < 427.53

So 90\% confidence interval for the mean weight of shipped homemade candies is between 392.47\ \ and\ \ 427.53.

For question B:

\to (n) = 500

\to (X) = 155

\to (p') = \frac{X}{n} = \frac{155}{500} = 0.31

Here we need to calculate 90\% confidence interval for the true proportion of all college students who own a car which can be calculated as

\to p' \pm Z_{\frac{\alpha}{2}} \times \sqrt{\frac{p'(1-p')}{n}}

\to C.I= 0.90

\to (\alpha) = 0.10

\to \frac{\alpha}{2} = 0.05

Using the Z-table we found Z_{\frac{\alpha}{2}} = 1.645

therefore 90\% the confidence interval for the genuine proportion of college students who possess a car is

\to 0.31 \pm 1.645\times \sqrt{\frac{0.31\times (1-0.31)}{500}}\\\\ \to 0.31 \pm 0.034\\\\ \to 0.276 < p < 0.344

So 90\% the confidence interval for the genuine proportion of college students who possess a car is between 0.28 \ and\ 0.34.

For question C:

  • In question A, We are  90\% certain that the weight of supplied homemade candies is between 392.47 grams and 427.53 grams.
  • In question B, We are  90\% positive that the true percentage of college students who possess a car is between 0.28 and 0.34.

Learn more about confidence intervals:  

brainly.in/question/16329412

7 0
2 years ago
A step function h(x) is represented by y = -2Lx] Which phrase best describes the range of the function h(x)?
Pani-rosa [81]

The phrase best describes the range of the function h(x) is option A: all real numbers.

<h3>What is a range of a function?</h3>

The range is the set of all values which the given function can output.

A step function h(x) is represented by y = -2|x|.

The mode of x gives the real number every time by putting the values.

The phrase best describes the range of the function h(x) is option A: all real numbers.

Learn more about appropriate domain and range here:

brainly.com/question/20073127

#SPJ1

5 0
1 year ago
Other questions:
  • What is the answer to <br> 5 (x - 1) + 3 = 13
    12·2 answers
  • How many 2/3 ounce packages of peanuts can be made with 8 ounces
    10·2 answers
  • #2
    9·1 answer
  • I know she graphed it correctly but i don't know the steps she took to graph it
    13·1 answer
  • Help me please!!❤️❤️
    5·1 answer
  • Find y. (leave answer in simplest radical form) *
    15·1 answer
  • Latoya Abdul and dale sent a total of 88 text messages over their cell phones during the weekend Latoya sent 8 more messages tha
    6·1 answer
  • True of false Trapezoid can be a parallelogram?​
    8·2 answers
  • Pls help urgently extra points and mark brainlist
    7·1 answer
  • The mapping diagram shows a relation. A mapping diagram shows a relation, using arrows, between inputs and outputs for the follo
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!