Answer:
The <u>Acidophilic Microbial</u> Community has low diversity with microorganisms primarily in Leptospirillum groups II and III and from Ferroplasma types I and II.
Explanation:
An acidophilic microorganism or plant is one which grows best in acidic conditions.
They are also referred to as microorganisms which occur in acidic natural (solfataric fields, sulphuric pools) and man-made (eg. Acid mine drainage) environments.
Acidophilic Microbes otherwise known as Acidophiles are an ecologically and economically important group.
They possess networked cellular adaptations for regulating intracellular pH. Several extracellular enzymes from acidophilic microbes are known to be functional at much lower pH than that inside the cells.
Acid stable enzymes have applications in several industries such as starch, baking, fruit juice processing, animal feed and pharmaceuticals, and some of them have already been commercialized. Acidophiles are widely used in bio-leaching of metals from low grade ores
Recent studies show that acidophiles are currently being considered to be utilized in bio-conversion and bio-remediation, as well as in microbial fuel cells to generate electricity.
Acidophilic microbes of similar characteristics are classifed in groups for ease of study and identification.
Leptospirillum Group II and II as well as Ferroplasma types I and II are groups of acidophilic microorganisms within the Acidophillic Microbial community.
Cheers!
Answer:
A
Explanation:
Homeostasis is basically the organism being able to live without need of an outside source
Respiration is the transformation of glucose to ATP, which is energy that the body can use.
Respiration consists of several steps: glycolysis, TCA/Krebs/Citric acid sycle and at last the oxidative phosphorylation.
The molecules needed for this to happen is water, oxygen (O2), NADH, ATP and glucose.