Let's solve your equation step-by-step.<span><span><span>2<span>(<span>h−8</span>)</span></span>−h</span>=<span>h−16</span></span>Step 1: Simplify both sides of the equation.<span><span><span>2<span>(<span>h−8</span>)</span></span>−h</span>=<span>h−16</span></span><span>Simplify: (Show steps)</span><span><span>h−16</span>=<span>h−16</span></span>Step 2: Subtract h from both sides.<span><span><span>h−16</span>−h</span>=<span><span>h−16</span>−h</span></span><span><span>−16</span>=<span>−<span>16
</span></span></span>Step 3: Add 16 to both sides.<span><span><span>−16</span>+16</span>=<span><span>−16</span>+16</span></span><span>0=0</span>Answer:<span>All real numbers are solutions.</span>
See the attached figure to better understand the problem
we know that
tan 29°=AC/CB--------> CB=AC/tan 29°
AC=110 ft
CB--------> <span>how far the man is from the helicopter landing pad
</span>so
CB=AC/tan 29°----------> CB=110/ tan 29°----------> CB=198.45 ft
the answer is
the man is 198.45 ft from the helicopter landing pad
Answer:
10 and 15
Step-by-step explanation:
Let 'x' and 'y' are the numbers we need to find.
x + y = 25 (two numbers whose sum is 25)
(1/x) + (1/y) = 1/6 (the sum of whose reciprocals is 1/6)
The solutions of the this system of equations are the numbers we need to find.
x = 25 - y
1/(25 - y) + 1/y = 1/6 multiply both sides by 6(25-y)y
6y + 6(25-y) = (25-y)y
6y + 150 - 6y = 25y - (y^2)
y^2 - 25y + 150 = 0 quadratic equation has 2 solutions
y1 = 15
y2 = 10
Thus we have
:
First solution: for y = 15, x = 25 - 15 = 10
Second solution: for y = 10, x = 25 - 10 = 15
The first and the second solution are in fact the same one solution we are looking for: the two numbers are 10 and 15 (since the combination 10 and 15 is the same as 15 and 10).