1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Akimi4 [234]
3 years ago
12

To solve the problem: "What is 3/4 of 12," you would _____ .

Mathematics
1 answer:
Olegator [25]3 years ago
3 0
Divide 12 by 4 then times that by 3
You might be interested in
Five divided sixty eight
Schach [20]
5/68, or about 0.07                                                              
8 0
3 years ago
TRUE OR FALSE
Zielflug [23.3K]

Answer:

true

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
14n = -126<br> Need Hell ASAP<br> Algebra Quiz
sweet-ann [11.9K]

14n=-126

/14 /14 divide by 14 on both sides of the

equation

n=-9

5 0
3 years ago
Read 2 more answers
34​% of college students say they use credit cards because of the rewards program. You randomly select 10 college students and a
finlep [7]

Answer:

a) There is a 18.73% probability that exactly two students use credit cards because of the rewards program.

b) There is a 71.62% probability that more than two students use credit cards because of the rewards program.

c) There is a 82% probability that between two and five students, inclusive, use credit cards because of the rewards program.

Step-by-step explanation:

There are only two possible outcomes. Either the student use credit cards because of the rewards program, or they use for other reason. So, we can solve this problem by the binomial distribution.

Binomial probability

The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.

P(X = x) = C_{n,x}.\pi^{x}.(1-\pi)^{n-x}

In which C_{n,x} is the number of different combinatios of x objects from a set of n elements, given by the following formula.

C_{n,x} = \frac{n!}{x!(n-x)!}

And \pi is the probability of X happening.

In this problem, we have that:

10 student are sampled, so n = 10

34% of college students say they use credit cards because of the rewards program, so \pi = 0.34

(a) exactly​ two

This is P(X = 2).

P(X = x) = C_{n,x}.\pi^{x}.(1-\pi)^{n-x}

P(X = 2) = C_{10,2}.(0.34)^{2}.(0.66)^{8} = 0.1873

There is a 18.73% probability that exactly two students use credit cards because of the rewards program.

(b) more than​ two

This is P(X > 2).

Either a value is larger than two, or it is smaller of equal. The sum of the decimal probabilities must be 1. So:

P(X \leq 2) + P(X > 2) = 1

P(X > 2) = 1 - P(X \leq 2)

In which

P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2)

So

P(X = x) = C_{n,x}.\pi^{x}.(1-\pi)^{n-x}

P(X = 0) = C_{10,0}.(0.34)^{0}.(0.66)^{10} = 0.0157

P(X = 1) = C_{10,1}.(0.34)^{1}.(0.66)^{9} = 0.0808

P(X = 2) = C_{10,2}.(0.34)^{2}.(0.66)^{8} = 0.1873

P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.0157 + 0.0808 + 0.1873 = 0.2838

P(X > 2) = 1 - P(X \leq 2) = 1 - 0.2838 = 0.7162

There is a 71.62% probability that more than two students use credit cards because of the rewards program.

(c) between two and five inclusive

This is:

P = P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5)

P(X = x) = C_{n,x}.\pi^{x}.(1-\pi)^{n-x}

P(X = 2) = C_{10,2}.(0.34)^{2}.(0.66)^{8} = 0.1873

P(X = 3) = C_{10,3}.(0.34)^{3}.(0.66)^{7} = 0.2573

P(X = 4) = C_{10,4}.(0.34)^{4}.(0.66)^{6} = 0.2320

P(X = 5) = C_{10,5}.(0.34)^{5}.(0.66)^{5} = 0.1434

P = P(X = 2) + P(X = 3) + P(X = 4) + P(X = 5) = 0.1873 + 0.2573 + 0.2320 + 0.1434 = 0.82

There is a 82% probability that between two and five students, inclusive, use credit cards because of the rewards program.

6 0
3 years ago
In a survey of 1000 eligible voters selected at random, it was found that 100 had a college degree. Additionally, it was found t
o-na [289]

Answer:

A. 8%

B. 39.6%

C. 58.4%

D. 41.6%

Step-by-step explanation:

Computation to determine the probability of eligible voter selected at random

First step is to Draw up a contingincy table which will include Rows = Degree/No degree

and Columns= Vote/Not vote

..............Vote..No vote

Degree 80...20...100

(80%*100=80)

(100-80=20)

No Degree 504..396..900

(1000-100=900)

(56%*900=504)

(504-900=396

Totals 584..416...1000

(80+504=584)

(20+396=416)

(900+100=1,000)

Summary

..............Vote..No vote

Degree 80...20...100

No Degree 504..396..900

Total Totals 584..416...1000

A. Calculation to determine the probability of The voter had a college degree and voted in the last presidential election.

P = 80/1,000

P=0.08*100

P=8%

Therefore the probability of The voter had a college degree and voted in the last presidential election will be 8%

B. Calculation to determine the probability of The voter did not have a college degree and did not vote in the last presidential election.

P =396/1000

P=0.396*100

P=39.6%

Therefore the probability of The voter did not have a college degree and did not vote in the last presidential election will be 39.6%

C. Calculation to determine the probability if The voter voted in the last presidential election.

P = 584/1,000

P=0.584*100

P=58.4%

Therefore the probability if The voter voted in the last presidential election will be 58.4%

D. Calculation to determine the probability if The voter did not vote in the last presidential election.

P = 416/1000

P=0.416*100

P=41.6%

Therefore the probability if The voter did not vote in the last presidential election will be 41.6%

8 0
3 years ago
Other questions:
  • Help me solve for q!<br><br> 21 + 3q &lt; 3 (13 - q)<br><br> How do you solve it? Thank you!
    7·1 answer
  • Convert 5.4 ⋅ 103 to standard form.
    7·1 answer
  • I need help doing negative number
    12·1 answer
  • If quadrilateral ABCD rotates 90° counterclockwise about the origin, what are the coordinates of A′ in quadrilateral A′B′C′D′ ?
    11·1 answer
  • Which three side lengths best describe the triangle in the diagram?
    7·1 answer
  • On Friday, 20 dogs attended doggy daycare. On Saturday, 26 dogs attended. What is the percent of change?
    5·1 answer
  • $650 is invested in an account earning 8.6% interest (APR), compounded monthly. Write a function showing the value of the accoun
    6·1 answer
  • I will mark Brainliest for first and correct answer. PLEASE NO LINKS
    8·1 answer
  • Sally does 12 loads of laundry every week. On average how many loads of laundry does sally do in one day
    15·1 answer
  • -32/8<br><br> ill will mark as brain list
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!