Answer: 1/2
<u>Multiply</u>
2×5=10
10/4-2 is your new problem
<u>Simplify</u>
10/4 = 5/2
5/2-2 is your new problem
<u>Subtract</u>
5/2-2=1/2
P=2x-7 + 5x-3 +2x-2
P= 9x -12
-19 to -15 would be a positive 4 difference
19 to 15 = 4 this would be a -4 difference
3 to 7 is a positive 4 difference
-3 to 7 is a difference of 10
so there is 1 with a -4 difference
answer is B.
You can solve for the velocity and position functions by integrating using the fundamental theorem of calculus:
<em>a(t)</em> = 40 ft/s²
<em>v(t)</em> = <em>v </em>(0) + ∫₀ᵗ <em>a(u)</em> d<em>u</em>
<em>v(t)</em> = -20 ft/s + ∫₀ᵗ (40 ft/s²) d<em>u</em>
<em>v(t)</em> = -20 ft/s + (40 ft/s²) <em>t</em>
<em />
<em>s(t)</em> = <em>s </em>(0) + ∫₀ᵗ <em>v(u)</em> d<em>u</em>
<em>s(t)</em> = 10 ft + ∫₀ᵗ (-20 ft/s + (40 ft/s²) <em>u</em> ) d<em>u</em>
<em>s(t)</em> = 10 ft + (-20 ft/s) <em>t</em> + 1/2 (40 ft/s²) <em>t</em> ²
<em>s(t)</em> = 10 ft - (20 ft/s) <em>t</em> + (20 ft/s²) <em>t</em> ²
The zeros of given function
is – 5 and – 3
<u>Solution:</u>

We have to find the zeros of the function by rewriting the function in intercept form.
By using intercept form, we can put value of y as to obtain zeros of function
We know that, intercept form of above equation is 


Taking “x” as common from first two terms and “3” as common from last two terms
x (x + 5) + 3(x + 5) = 0
(x + 5)(x + 3) = 0
Equating to 0 we get,
x + 5 = 0 or x + 3 = 0
x = - 5 or – 3
Hence, the zeroes of the given function are – 5 and – 3