If 1 kilogram equals 2.2 pounds, how many pounds will 31.5 kilograms equal?
31.5*2.2 or 69.3 pounds.
Answer:
x value of vertical asymptote and y value of horizontal asymptote
Step-by-step explanation:
The graph of 1/x approaches infinity as x approaches 0 (the vertical asymptote)
As x gets either bigger or smaller, 1/x approaches the x-axis (from above on the positive side, from below on the negative side) (the horizontal asymptote)
Consider 1/(x-5) + 2, at what value of x does the graph 'go nuts' ?
When the bottom of the fraction becomes 0, x - 5 becomes 0 when x = 5, so the vertical asymptote of g(x) is at x=5
What value of y does f(x) approach as x gets more positive or more negative - as x gets bigger (as an example), y approaches 0
What y value does g(x) approach as x gets bigger? Well, as x gets big, 1/(x-5) gets small, approaching 0. The smallest 0 + 2 can get is 2, so y=2 is the horizontal asymptote
Since PQ bisects CX at point J, JX=CJ
4y=y+9
-y -y
3y=9
divide by 3
y=3
T = 5, so after 5 years
p(t) = t^3 - 14t^2 + 20t + 120
Take derivative to find minimum:
p’(t) = 3t^2 - 28t + 10
Factor to solve for t:
p’(t) = (3t - 2)(t - 5)
0 = (3t - 2)(t - 5)
0 = 3t - 2
2 = 3t
2/3 = t
Plug 2/3 into original equation, this is a maximum. We want the minimum:
0 = t - 5
5 = t
Plug back into original:
5^3 - 14(5)^2 + 20(5) + 120
125 - 14(25) + 100 + 120
125 - 350 + 220
- 225 + 220
p(5) = -5