Answer:
1). 24
2). 8
Explanation:
1).
285$ - 45$ = 240$
240$/10 = 24$
Therefore, he pays 24$ a month.
2).
Let x be the number than triple:
3x - 5 = 19
3x = 19 + 5
3x = 24
x = 24/3
x = 8
Answer: Last Option

Step-by-step explanation:
The initial height of the plant of species A is 25 cm and grows 3 centimeters per month.
If m represents the number of months elapsed then the equation for the height of the plant of species A is:

For species B the initial height is 10 cm and it grows 8 cm each month
If m represents the number of months elapsed then the equation for the height of the plant of species B is:

Finally, the system of equations is:

The answer is the last option
Answer:
the answer will be D
Step-by-step explanation:
<h2>Hello!</h2>
The answer is:
C. Cosine is negative in Quadrant III
<h2>
Why?</h2>
Let's discard each given option in order to find the correct:
A. Tangent is negative in Quadrant I: It's false, all functions are positive in Quadrant I (0° to 90°).
B. Sine is negative in Quadrant II: It's false, sine is negative in positive in Quadrant II. Sine function is always positive coming from 90° to 180°.
C. Cosine is negative in Quadrant III. It's true, cosine and sine functions are negative in Quadrant III (180° to 270°), meaning that only tangent and cotangent functions will be positive in Quadrant III.
D. Sine is positive in Quadrant IV: It's false, sine is negative in Quadrant IV. Only cosine and secant functions are positive in Quadrant IV (270° to 360°)
Have a nice day!
It's difficult to make out what the force and displacement vectors are supposed to be, so I'll generalize.
Let <em>θ</em> be the angle between the force vector <em>F</em> and the displacement vector <em>r</em>. The work <em>W</em> done by <em>F</em> in the direction of <em>r</em> is
<em>W</em> = <em>F</em> • <em>r</em> cos(<em>θ</em>)
The cosine of the angle between the vectors can be obtained from the dot product identity,
<em>a</em> • <em>b</em> = ||<em>a</em>|| ||<em>b</em>|| cos(<em>θ</em>) ==> cos(<em>θ</em>) = (<em>a</em> • <em>b</em>) / (||<em>a</em>|| ||<em>b</em>||)
so that
<em>W</em> = (<em>F</em> • <em>r</em>)² / (||<em>F</em>|| ||<em>r</em>||)
For instance, if <em>F</em> = 3<em>i</em> + <em>j</em> + <em>k</em> and <em>r</em> = 7<em>i</em> - 7<em>j</em> - <em>k</em> (which is my closest guess to the given vectors' components), then the work done by <em>F</em> along <em>r</em> is
<em>W</em> = ((3<em>i</em> + <em>j</em> + <em>k</em>) • (7<em>i</em> - 7<em>j</em> - <em>k</em>))² / (√(3² + 1² + 1²) √(7² + (-7)² + (-1)²))
==> <em>W</em> ≈ 5.12 J
(assuming <em>F</em> and <em>r</em> are measured in Newtons (N) and meters (m), respectively).