
is the equation of a circle centered at

with radius

.
Here

,

, and

. So the answer is (C)
Go over 9x and that should be it
First we use product rule
y=x^2lnx
dy/dx = x^2 d/dx (lnx) + lnx d/dx (x^2)
dy/dx = x^2 (1/x) + lnx (2x)
dy/dx = x + 2xlnx
now taking second derivative:
d2y/dx2 = 1 + 2[x (1/x) + lnx (1)]
d2y/dx2 = 1 + 2[1+lnx]
1+2+2lnx
3+2lnx is the answer
The answer is 5.35, 275, 336, and 535