<h3>
Answer: D) 3/150</h3>
==========================================================
Explanation:
With the use of a calculator, we see that,
- 11/19 = 0.57894736842106...., the decimals eventually repeat; but unfortunately my calculator ran out of room to show the repeating portion
- 4/7 = 0.5714285714285714..., the block "571428" repeats forever
- 1/3 = 0.333333.... the 3s go on forever
- 3/150 = 0.02
So 3/150 converts to the terminating decimal 0.02
The word "terminate" means "stop". In the other decimal values, the decimal digits go on forever repeating the patterns mentioned.
----------------------
A non-calculator approach will have us simplify 3/150 into 1/50 after dividing both parts by the GCF 3. Then notice how 50 has the prime factorization of 2*5*5. The fact that the denominator 50 can be factored in terms of only 2's and 5's is enough evidence to conclude that the fraction converts to a terminating decimal.
If the denominator factors into some other primes, other than 2s and 5s, then we don't have a terminating decimal. So that's why 11/19, 4/7 and 1/3 convert to non-terminating decimals.
UW and VW are the same so 9
22.5-4.5= 18 then divide the 18 by 2 so 9
Answer:
x-7>0
Straight answer: x-7
Step-by-step explanation:
Assuming that the timber is X cm long and 7cm was cut off, there remaining amount is x - 7cm. In order for 7cm to be cut off, the timber must have been > 7cm long => x > 7 => x - 7 > 0
the answer would be d, very much appreciated if you would give me brainliest
Answer:
The correct option is;
21 ft
Step-by-step explanation:
The equation of the parabolic arc is as follows;
y = a(x - h)² + k
Where the height is 25 ft and the span is 40 ft, the coordinates of the vertex (h, k) is then (20, 25)
We therefore have;
y = a(x - 20)² + 25
Whereby the parabola starts from the origin (0, 0), we have;
0 = a(0 - 20)² + 25
0 = 20²a + 25 → 0 = 400·a + 25
∴a = -25/400 = -1/16
The equation of the parabola is therefore;

To find the height 8 ft from the center, where the center is at x = 20 we have 8 ft from center = x = 20 - 8 = 12 or x = 20 + 8 = 28
Therefore, plugging the value of x = 12 or 28 in the equation for the parabola gives;
.