Answer:
78
Step-by-step explanation:
Evaluate 6 (2 x^2 - 5) where x = -3:
6 (2 x^2 - 5) = 6 (2×(-3)^2 - 5)
Hint: | Evaluate (-3)^2.
(-3)^2 = 9:
6 (2×9 - 5)
Hint: | Multiply 2 and 9 together.
2×9 = 18:
6 (18 - 5)
Hint: | Subtract 5 from 18.
| 1 | 8
- | | 5
| 1 | 3:
6×13
Hint: | Multiply 6 and 13 together.
6×13 = 78:
Answer: 78
All the components in the state vector need to sum to 1. You're given that component corresponding to state 1 is 0.2, and that the component for state 3 is 0.
That leaves states 2 and 4, for which you're told that the component for state 2 is four times as large. If

is the component for state

, then you have

which means

. So the state vector is

.
Answer:
0.9999
Step-by-step explanation:
Let X be the random variable that measures the time that a switch will survive.
If X has an exponential distribution with an average life β=44, then the probability that a switch will survive less than n years is given by
So, the probability that a switch fails in the first year is
Now we have 100 of these switches installed in different systems, and let Y be the random variable that measures the the probability that exactly k switches will fail in the first year.
Y can be modeled with a binomial distribution where the probability of “success” (failure of a switch) equals 0.0225 and
where
equals combinations of 100 taken k at a time.
The probability that at most 15 fail during the first year is
F(-2) = 3(-2)-5 = -11
hope it helps