Linear equations are used to represent relations that have constant rates
The linear regression equation that models the data in this table is ![\^y = 2.40476x + 0.33333](https://tex.z-dn.net/?f=%5C%5Ey%20%3D%202.40476x%20%2B%200.33333)
<h3>Regression equation using a graphing calculator</h3>
To calculate the regression equation, we make use of a graphing calculator.
Using the graphing calculator, we have the following data:
- Sum of X = 28
- Sum of Y = 70
- Mean X = 3.5
- Mean Y = 8.75
- Sum of squares (SSX) = 42
- Sum of products (SP) = 101
<h3 /><h3>Formulating the regression equation</h3>
The regression equation is represented as:
![\^y = b\^x + a](https://tex.z-dn.net/?f=%5C%5Ey%20%3D%20b%5C%5Ex%20%2B%20a)
Where:
and ![a = MY - bMX](https://tex.z-dn.net/?f=a%20%3D%20MY%20-%20bMX)
So, we have:
![b = \frac{101}{42}](https://tex.z-dn.net/?f=b%20%3D%20%5Cfrac%7B101%7D%7B42%7D)
![b = 2.40476](https://tex.z-dn.net/?f=b%20%3D%202.40476)
Also, we have:
![a = MY - bMX](https://tex.z-dn.net/?f=a%20%3D%20MY%20-%20bMX)
![a= 8.75 - 2.4\times 3.5](https://tex.z-dn.net/?f=a%3D%208.75%20-%202.4%5Ctimes%203.5)
![a= 0.33333](https://tex.z-dn.net/?f=a%3D%200.33333)
Hence, the linear regression equation is:
![\^y = 2.40476x + 0.33333](https://tex.z-dn.net/?f=%5C%5Ey%20%3D%202.40476x%20%2B%200.33333)
Read more about regression equations at:
brainly.com/question/25987747
Answer:
An anticodon is a trinucleotide sequence complementary to that of a corresponding codon in a messenger RNA (mRNA) sequence. An anticodon is found at one end of a transfer RNA (tRNA) molecule.
Explanation:
yes, because its close to a and b.
Answer:
Where is the DNA template strand?
Explanation: