-3(3h-1)<span>≤-7h-5
-9h+3</span><span>≤-7h-5
-9h+7h</span><span>≤-5-3
-2h</span><span>≤-8
h</span><span><span>≥</span>4
</span>Sign changes because you multiply with negative both sides.
Answer:

Step-by-step explanation:
If we want to convert
into a radical simplified, we need to find two numbers that multiply to be -50 and one of them can be squared.

The square root of -25 is 5i.
So:

Hope this helped!
Answer:
18
Step-by-step explanation:
You plug in 2 hours as your x value. You get 4(2) + 10 = 18.
Answer:
jus press alt f4 and a overlay will open up with all the answers
Step-by-step explanation:
The matrix equation that represents this situation is
![\left[\begin{array}{ccc}3&2&0\\1&0&4\\3&1&1\end{array}\right]*\left[\begin{array}{ccc}x\\y\\z\end{array}\right]=\left[\begin{array}{ccc}13.50\\16.50\\14.00\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%262%260%5C%5C1%260%264%5C%5C3%261%261%5Cend%7Barray%7D%5Cright%5D%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D13.50%5C%5C16.50%5C%5C14.00%5Cend%7Barray%7D%5Cright%5D%20)
Use technology to find the inverse of matrix A:
![A^{-1}= \left[\begin{array}{ccc}-\frac{2}{5}&-\frac{1}{5}&\frac{4}{5}\\ \frac{11}{10}&\frac{3}{10}&-\frac{6}{5}\\\frac{1}{10}&\frac{3}{10}&-\frac{1}{5}\end{array}\right]](https://tex.z-dn.net/?f=A%5E%7B-1%7D%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Cfrac%7B2%7D%7B5%7D%26-%5Cfrac%7B1%7D%7B5%7D%26%5Cfrac%7B4%7D%7B5%7D%5C%5C%0A%5Cfrac%7B11%7D%7B10%7D%26%5Cfrac%7B3%7D%7B10%7D%26-%5Cfrac%7B6%7D%7B5%7D%5C%5C%5Cfrac%7B1%7D%7B10%7D%26%5Cfrac%7B3%7D%7B10%7D%26-%5Cfrac%7B1%7D%7B5%7D%5Cend%7Barray%7D%5Cright%5D%20)
Multiplying A inverse by B, we get the solution matrix
[tex]\left[\begin{array}{ccc}2.50\\3\\3.50\end{array}\right][\tex]