Answer:
The set of numbers that could not represent the three sides of a right triangle are;
{9, 24, 26}
Step-by-step explanation:
According to Pythagoras's theorem, when the lengths of the three sides of a right triangle includes two legs, 'x', and 'y', and the hypotenuse side 'r', we have;
r² = x² + y²
Where;
r > x, r > y
Therefore, analyzing the options using the relationship between the numbers forming the three sides of a right triangle, we have;
Set 1;
95² = 76² + 57², therefore, set 1 represents the three sides of a right triangle
Set 2;
82² = 80² + 18², therefore, set 2 represents the three sides of a right triangle
Set 3;
26² = 24² + 9², therefore, set 3 could not represent the three sides of a right triangle
Set 4;
39² = 36² + 15², therefore, set 4 represents the three sides of a right triangle
Answer:
Tan C = 3/4
Step-by-step explanation:
Given-
∠ A = 90°, sin C = 3 / 5
<u>METHOD - I</u>
<u><em>Sin² C + Cos² C = 1</em></u>
Cos² C = 1 - Sin² C
Cos² C = 
Cos² C = 
Cos² C = 
Cos C = 
Cos C = 
As we know that
Tan C = 
<em>Tan C =
</em>
<em>Tan C =
</em>
<u>METHOD - II</u>
Given Sin C = 
therefore,
AB ( Height ) = 3; BC ( Hypotenuse) = 5
<em>∵ ΔABC is Right triangle.</em>
<em>∴ By Pythagorean Theorem-</em>
<em>AB² + AC² = BC²</em>
<em>AC² </em><em>= </em><em>BC² </em><em>- </em><em> AB</em><em>² </em>
<em>AC² = 5² - 3²</em>
<em>AC² = 25 - 9</em>
<em>AC² = 16</em>
<em>AC ( Base) = 4</em>
<em>Since, </em>
<em>Tan C =
</em>
<em>Tan C =
</em>
<em>Hence Tan C =
</em>
<em />