Answer:
(1) breaking a pencil (2) rusting of iron
Explanation:
breaking a pencil does not alter the chemical properties of the pencil, it merely breaks it into 2 while the rusting of iron is changing the properties chemically because the iron is oxidizing and reacting with the water and oxygen in the atmosphere
Answer:
NO3-
Explanation:
Given the reaction equation;
Au(s) + 3NO3-(aq) + 6H+(aq)→Au3+(aq) + 3NO2(g) + 3H2O (l).
We can consider the oxidation states of species on the left and right hand sides of the reaction equation;
Au is in zero oxidation state on the left hand side and an oxidation state of +3 on the righthand side.
NO3- is in oxidation state of +5 on the righthand side and NO2 is in + 4 oxidation state.
H+ is in + 1 oxidation state on both the left and right hand sides of the reaction equation.
Since reduction has to do with a decrease in oxidation number, it follows that NO3- was reduced in the reaction.
The number of mole of nitrogen that occupies 1.2 L under the same condition is 0.6 mole
<h3>Data obtained from the question </h3>
- Initial mole (n₁) = 0.2 mole
- Initial volume (V₁) = 0.4 L
- Final volume (V₂) = 1.2 L
- Final mole (n₂) =?
<h3>How to determine the final mole </h3>
The final mole can be obtained by using the ideal gas equation as illustrated below:
PV = nRT
Divide both side n
PV / n = RT
Divide both side by P
V / n = RT / P
RT / P = constant
V / n = constant
Thus,
V₁ / n₁ = V₂ / n₂
0.4 / 0.2 = 1.2 / n₂
2 = 1.2 / n₂
Cross multiply
2 × n₂ = 1.2
Divide both side by 2
n₂ = 1.2 / 2
n₂ = 0.6 mole
Learn more about ideal gas equation:
brainly.com/question/4147359
#SPJ1
It has a density lower than 1