Answer:
The glassware and solvent for the production of grignard reagent and its reaction should by dry and anhydrous so as to prevent the conversion of the grignard reagent into saturated alkane. Acetone, is not a good solvent for the generation of grignard reagent because it has the potential of forming alcohol.
Explanation:
Grignard reagent is a compound formed by the reaction of halide of alkyl or alkene with magnesium metal. This makes the compound more nucleophilic. Thus the availability of an electrophile around it will evoke a quick reaction. The presence of water in an acidic condition will generate hydroxonium ions which are highly electrophilic. There will therefore be an introduction of hydrogen ions to the grignard reagent and which will displace the MgBr leading to the formation of alkane.
Acetone tends to produce alcohol when they are exposed to grignard reagent, thus they are not appropriate to be used as solvent. This is due to the resultant highly electrophilic nature of the carbonyl carbon on the acetone, thus will react with the nucleophilic carbon on the grignard. The reaction can be represented as follows:
RMgBr + CH3(CO)CH3 + H (with hydrogen ions) >>>RCOH + Mg(OH)Br
Answer:
make an observation that describes a problem
Explanation:
Answer:
All of the above
Explanation:
I believe all three are true. They see how the organism is similar to other organisms. They see if the organism has the characteristics of an animal or plant. They look at what makes the organism unique.
Answer:
oxygen is reduced to form water.
Explanation:
Cellular respiration
It is the set of reactions in which the ac. Pyruvic produced by glycolysis is split into CO2 and H2O and 36 ATP are produced. In eukaryotic cells breathing is performed in the mitochondria. It occurs in two stages:
- PIRUVATE OXIDATION
- AC CYCLE TRICARBOXYL
The "problem" with fermentation is that, by using organic molecules as terminal electron acceptors and having to dispose of the resulting product (lactic acid / ethanol) as waste, the potential energy of these compounds is lost.
The alternative solution is to use some non-organic molecule that can accept electrons and thus become a reduced molecule. Oxygen is perfect for this, because after receiving the electrons it combines with two protons, thus becoming the perfect liquid residue for the environment: H2O.
The scientists responsible for testing the hypothesis are already famous