we have

we know that
<u>The Rational Root Theorem</u> states that when a root 'x' is written as a fraction in lowest terms

p is an integer factor of the constant term, and q is an integer factor of the coefficient of the first monomial.
So
in this problem
the constant term is equal to 
and the first monomial is equal to
-----> coefficient is 
So
possible values of p are 
possible values of q are 
therefore
<u>the answer is</u>
The all potential rational roots of f(x) are
(+/-)
,(+/-)
,(+/-)
,(+/-)
,(+/-)
,(+/-)
Answer:
D. Pythagorean
Step-by-step explanation:
Given the identity
cos²x - sin²x = 2 cos²x - 1.
To show that the identity is true, we need to show that the left hand side is equal to right hand side or vice versa.
Starting from the left hand side
cos²x - sin²x ... 1
According to Pythagoras theorem, we know that x²+y² = r² in a right angled triangle. Coverting this to polar form, we have:
x = rcostheta
y = rsintheta
Substituting into the Pythagoras firnuka we have
(rcostheta)²+(rsintheta)² = r²
r²cos²theta+r²sin²theta = r²
r²(cos²theta+sin²theta) = r²
(cos²theta+sin²theta) = 1
sin²theta = 1 - cos²theta
sin²x = 1-cos²x ... 2
Substituting equation 2 into 1 we have;
= cos²x-(1-cos²x)
= cos²x-1+cos²x
= 2cos²x-1 (RHS)
This shows that cos²x -sin²x = 2cos²x-1 with the aid of PYTHAGORAS THEOREM
Answer:
(-10,0)(-5,0)(-10,-10)(-10,-5)
Step-by-step explanation:
If we count each box as one unit then we just count and if you left or down it is negative
Answer:
is it radius or diameter?
Answer:
162
Step-by-step explanation:
260/2=130
130+32=162