I believe the correct answer is D.
A = 11, b = 7
You just needed to multiply the terms together
The answer would be A. When using Cramer's Rule to solve a system of equations, if the determinant of the coefficient matrix equals zero and neither numerator determinant is zero, then the system has infinite solutions. It would be hard finding this answer when we use the Cramer's Rule so instead we use the Gauss Elimination. Considering the equations:
x + y = 3 and <span>2x + 2y = 6
Determinant of the equations are </span>
<span>| 1 1 | </span>
<span>| 2 2 | = 0
</span>
the numerator determinants would be
<span>| 3 1 | . .| 1 3 | </span>
<span>| 6 2 | = | 2 6 | = 0.
Executing Gauss Elimination, any two numbers, whose sum is 3, would satisfy the given system. F</span>or instance (3, 0), <span>(2, 1) and (4, -1). Therefore, it would have infinitely many solutions. </span>
Take the logarithm of both sides. The base of the logarithm doesn't matter.


Drop the exponents:

Expand the right side:

Move the terms containing <em>x</em> to the left side and factor out <em>x</em> :


Solve for <em>x</em> by dividing boths ides by 5 log(4) - log(3) :

You can stop there, or continue simplifying the solution by using properties of logarithms:



You can condense the solution further using the change-of-base identity,

Answer:
Simple.
The decimal 0.5555 is a rational number. It's a terminating decimal, since it doesn't end with an ellipsis.