The answer is B
I used these equations then i putted it together.
Charge = number of ( electron or proton ) x charge of ( electron or proton )
Force = k x (q1 q2)/r²
Answer:
coasting down hill on a bicycle
Explanation:
Coasting down the hill on a bicycle is a typical example of how kinetic energy is being transformed to potential energy in a system.
Kinetic energy is the energy due to the motion of a body, it can be derived using the expression below;
K.E =
m v²
Potential energy is the energy due to the position of a body. It can be derived using;
P.E = mgh
m is the mass
v is the velocity
g is the acceleration due to gravity
h is the height
Now, at the top of the hill, the potential energy is at the maximum. As the bicycle coasts down the potential energy is converted to kinetic energy.
Answer:
390 J
Explanation:
m = 3 kg
u = 16 i + 2 j
(a) Magnitude of velocity =
= 16.1245 m/s
KEi = 1/2 m v^2 = 0.5 x 3 x 16.1245 = 390 J
(b) v = 18 i + 14 j
Magnitude of velocity =
= 22.804 m/s
KEf = 1/2 m v^2 = 0.5 x 3 x 22.804 = 780 J
According to the work energy theorem
Work done = change in KE = KEf - KEi = 780 - 390 = 390 J
Answer:
Option D
Explanation:
These advancements are very expensive and not available to everyone. The others are positive aspects of these advancements in transportation.
Answer:
The formula to find the diameter states the relationship between the diameter and the radius. The diameter is made up of two segments that are each a radius. Therefore, the formula is: Diameter = 2 * the measurement of the radius. You can abbreviate this formula as d=2r.
Explanation: