Answer:
1. ∠1 = 120°
2. ∠2 = 60°
3. ∠3 = 60°
4. ∠4 = 60°
5. ∠5 = 75°
6. ∠6 = 45°
Step-by-step explanation:
From the diagram, we have;
1. ∠1 and the 120° angle are corresponding angles
Corresponding angles are equal, therefore;
∠1 = 120°
2. ∠2 and the 120° angle are angles on a straight line, therefore they are supplementary angles such that we have;
∠2 + 120° = 180°
∠2 = 180° - 120° = 60°
∠2 = 60°
3. Angle ∠3 and ∠2 are vertically opposite angles
Vertically opposite angles are equal, therefore, we get;
∠3 = ∠2 = 60°
∠3 = 60°
4. Angle ∠1 and angle ∠4 an=re supplementary angles, therefore, we get;
∠1 + ∠4 = 180°
∠4 = 180° - ∠1
We have, ∠1 = 120°
∴ ∠4 = 180° - 120° = 60°
∠4 = 60°
5. let the 'x' and 'y' represent the two angles opposite angles to ∠5 and ∠6
Given that the two angles opposite angles to ∠5 and ∠6 are equal, we have;
x = y
The two angles opposite angles to ∠5 and ∠6 and the given right angle are same side interior angles and are therefore supplementary angles
∴ x + y + 90° = 180°
From x = y, we get;
y + y + 90° = 180°
2·y = 180° - 90° = 90°
y = 90°/2 = 45°
y = 45°
Therefore, we have;
∠4 + ∠5 + y = 180° (Angle sum property of a triangle)
∴ ∠5 = 180 - ∠4 - y
∠5 = 180° - 60° - 45° = 75°
∠5 = 75°
6. ∠6 and y are alternate angles, therefore;
∠6 = y = 45°
∠6 = 45°.
Answer:
x= -2-√11. or. x= -2 + √11
Step-by-step explanation:
solving quadratic equation by completing the square
x^2+4x-7=0
x^2+4x=7
x^2+4x + (4/2)^2=7 + (4/2)^2 ( adding (1/2 coefficient of x)^2 on both sides
x^2+4x + 4=7 + 4
x^2+4x + 4=11. factorize(x^2+4x + 4) into (x + 2)^2
(x + 2)^2=11
√(x + 2)^2= + - √11
x + 2 = + - √11
there are two different solution .
x + 2 = -√11. or x + 2 = + √11.
x= -2-√11. or. x= -2 + √11.
Please find the attached diagram for a better understanding of the question.
As we can see from the diagram,
RQ = 21 feet = height of the hill
PQ = 57 feet = Distance between you and the base of the hill
SR= h=height of the statue
=Angle subtended by the statue to where you are standing.
= which is unknown.
Let us begin solving now. The first step is to find the angle
which can be found by using the following trigonometric ratio in
:

Which gives
to be:

Now, we know that
and
can be added to give us the complete angle
in the right triangle
.
We can again use the tan trigonometric ratio in
to solve for the height of the statue, h.
This can be done as:





Thus, the height of the statue is approximately, 8.45 feet.
For every 3 tablespoons of cocoa, Nate uses 1 tablespoon of sugar.
Since the sugar is halved, the cocoa should be halved as well. 6/2 is 3.