Answer: (13.4996, 32.5004)
Step-by-step explanation:
The confidence interval for mean difference is given by :-
,
where
= sample mean difference .
= critical t value (two-tailed)
SE= Standard error.
Given :

SE= 4.2
Now, the confidence interval for mean difference will be :-
Hence, the required confidence interval : (13.4996, 32.5004)
__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)____φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)v__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)__φ(。。)
Answer:
Step-by-step explanation:
[0,7)
because the dot is colored in you need to have the bracket
Answer:
Step-by-step explanation:
Given expression is,

To prove this identity we will take the right side of the identity,


![=\frac{1}{2}[\frac{2(1-\text{tan}^2\frac{A}{2})}{2tan\frac{A}{2}}]](https://tex.z-dn.net/?f=%3D%5Cfrac%7B1%7D%7B2%7D%5B%5Cfrac%7B2%281-%5Ctext%7Btan%7D%5E2%5Cfrac%7BA%7D%7B2%7D%29%7D%7B2tan%5Cfrac%7BA%7D%7B2%7D%7D%5D)
[Since
]
= cot A
Hence right side of the equation is equal to the left side of the equation.
??? Im lost in this question, could you be more specific?