L
=
∫
t
f
t
i
√
(
d
x
d
t
)
2
+
(
d
y
d
t
)
2
d
t
. Since
x
and
y
are perpendicular, it's not difficult to see why this computes the arclength.
It isn't very different from the arclength of a regular function:
L
=
∫
b
a
√
1
+
(
d
y
d
x
)
2
d
x
. If you need the derivation of the parametric formula, please ask it as a separate question.
We find the 2 derivatives:
d
x
d
t
=
3
−
3
t
2
d
y
d
t
=
6
t
And we substitute these into the integral:
L
=
∫
√
3
0
√
(
3
−
3
t
2
)
2
+
(
6
t
)
2
d
t
And solve:
=
∫
√
3
0
√
9
−
18
t
2
+
9
t
4
+
36
t
2
d
t
=
∫
√
3
0
√
9
+
18
t
2
+
9
t
4
d
t
=
∫
√
3
0
√
(
3
+
3
t
2
)
2
d
t
=
∫
√
3
0
(
3
+
3
t
2
)
d
t
=
3
t
+
t
3
∣
∣
√
3
0
=
3
√
3
+
3
√
3
=6The arclength of a parametric curve can be found using the formula:
L
=
∫
t
f
t
i
√
(
d
x
d
t
)
2
+
(
d
y
d
t
)
2
d
t
. Since
x
and
y
are perpendicular, it's not difficult to see why this computes the arclength.
It isn't very different from the arclength of a regular function:
L
=
∫
b
a
√
1
+
(
d
y
d
x
)
2
d
x
. If you need the derivation of the parametric formula, please ask it as a separate question.
We find the 2 derivatives:
d
x
d
t
=
3
−
3
t
2
d
y
d
t
=
6
t
And we substitute these into the integral:
L
=
∫
√
3
0
√
(
3
−
3
t
2
)
2
+
(
6
t
)
2
d
t
And solve:
=
∫
√
3
0
√
9
−
18
t
2
+
9
t
4
+
36
t
2
d
t
=
∫
√
3
0
√
9
+
18
t
2
+
9
t
4
d
t
=
∫
√
3
0
√
(
3
+
3
t
2
)
2
d
t
=
∫
√
3
0
(
3
+
3
t
2
)
d
t
=
3
t
+
t
3
∣
∣
√
3
0
=
3
√
3
+
3
√
3
=
6
√
3
Be aware that arclength usually has a difficult function to integrate. Most integrable functions look like the above where a binomial is squared and adding the two terms will flip the sign of the binomial.
Be aware that arclength usually has a difficult function to integrate. Most integrable functions look like the above where a binomial is squared and adding the two terms will flip the sign of the binomial.
Move the decimal over by 2
so 58.54%
that simple
Yes
Y varies directly with x, it is a direct relationship between the two.
Answer:

Step-by-step explanation:
<h3>Factorize the Expressions</h3>


<h3>Factor out the Common Factors</h3>

<h3>Multiply the Common Factors</h3>

The Factored expressions are

And

Answer:
It is irrational because it can not be represented as a fraction of two integers
Step-by-step explanation:
Given


![H = \sqrt[3]5](https://tex.z-dn.net/?f=H%20%3D%20%5Csqrt%5B3%5D5)
Required
Why is the area irrational?
First, we need to calculate the area

![Area = \frac{1}{2}(3.6 + 12\frac{1}{3}) * \sqrt[3]5](https://tex.z-dn.net/?f=Area%20%3D%20%5Cfrac%7B1%7D%7B2%7D%283.6%20%2B%2012%5Cfrac%7B1%7D%7B3%7D%29%20%2A%20%5Csqrt%5B3%5D5)







<em>It is irrational because it can not be represented as a fraction of two integers</em>