Answer:
116−−√
110−−√
14√
18√
Step-by-step explanation:
Answer:
y'(t) = k(700,000-y(t)) k>0 is the constant of proportionality
y(0) =0
Step-by-step explanation:
(a.) Formulate a differential equation and initial condition for y(t) = the number of people who have heard the news t days after it has happened.
If we suppose that news spreads through a city of fixed size of 700,000 people at a time rate proportional to the number of people who have not heard the news that means
<em>dy/dt = k(700,000-y(t)) </em>where k is some constant of proportionality.
Since no one has heard the news at first, we have
<em>y(0) = 0 (initial condition)
</em>
We can then state the initial value problem as
y'(t) = k(700,000-y(t))
y(0) =0
AB = 6 cm, AC = 12 cm, CD = ?
In triangle ABC, ∠CBA = 90°, therefore in triangle BCD ∠CBD = 90° also.
Since ∠BDC = 55°, ∠CBD = 90°, and there are 180 degrees in a triangle, we know ∠DCB = 180 - 55 - 90 = 35°
In order to find ∠BCA, use the law of sines:
sin(∠BCA)/BA = sin(∠CBA)/CA
sin(∠BCA)/6 cm = sin(90)/12 cm
sin(∠BCA) = 6*(1)/12 = 0.5
∠BCA = arcsin(0.5) = 30° or 150°
We know the sum of all angles in a triangle must be 180°, so we choose the value 30° for ∠BCA
Now add ∠BCA (30°) to ∠DCB = 35° to find ∠DCA.
∠DCA = 30 + 35 = 65°
Since triangle DCA has 180°, we know ∠CAD = 180 - ∠DCA - ∠ADC = 180 - 65 - 55 = 60°
In triangle DCA we now have all three angles and one side, so we can use the law of sines to find the length of DC.
12cm/sin(∠ADC) = DC/sin(∠DCA)
12cm/sin(55°) = DC/sin(60°)
DC = 12cm*sin(60°)/sin(55°)
DC = 12.686 cm