Answer:
x axis and y axis divide the coordinate plane into four quadrants.
Step-by-step explanation:
If one coordinate is zero, then the point is located on the x-axis or the y-axis. If y coordinate is zero, then the point is located on the y-axis. If both coordinates are zero, then the point represents the origin.
I believe the equation is
![4 \sqrt[4]{2x} + 6 \sqrt[4]{2x}](https://tex.z-dn.net/?f=4%20%5Csqrt%5B4%5D%7B2x%7D%20%2B%206%20%20%5Csqrt%5B4%5D%7B2x%7D%20)
In this case, you would simplify it by adding them together.
![4 \sqrt[4]{2x} + 6 \sqrt[4]{2x}](https://tex.z-dn.net/?f=4%20%5Csqrt%5B4%5D%7B2x%7D%20%2B%206%20%20%5Csqrt%5B4%5D%7B2x%7D%20)
=
![10 \sqrt[4]{2x}](https://tex.z-dn.net/?f=10%20%20%5Csqrt%5B4%5D%7B2x%7D%20)
And can even be changed to an exponential equation:
There are web sites and videos that stand ready to show you how to bisect an angle.
The basic idea is that you draw an arc through both rays so that the points of intersection are the same distance from the vertex. Then, you construct a perpendicular bisector of the segment between those intersection points. That will bisect the angle.
For (3), you bisect each of the angles made by the original bisector. (1/2 of 1/2 = 1/4)
You can use liters, cups, etc i would suggest kiters
Answer:
The net forces exerted on the horse and cart are not the same, so they are not balanced forces.
Step-by-step explanation:
Please see the Newton's 2nd Law which states that an object accelerates if there is a net or unbalanced force on it. In this scenario there is just one force exerted on the wagon i.e: the force that the horse exerts on it. The wagon accelerates because the horse pulls on it. And the amount of acceleration equals the net force on the wagon divided by its mass.
As there are two forces the push and pull the horse; the wagon pulls the horse backwards, and the ground pushes the horse forward. The net force is determined by the relative sizes of these two forces.
If the ground pushes harder on the horse than the wagon pulls, there is a net force in the forward direction, and the horse accelerates forward, and if the wagon pulls harder on the horse than the ground pushes, there is a net force in the backward direction, and the horse accelerates backward.
If the force that the wagon exerts on the horse is the same size as the force that the ground exerts, the net force on the horse is zero, and the horse does not accelerate.