The value of n, the Hill coefficient, for hemoglobin is about 2 to 3 times as great as the value for myoglobin.
Hill Equation
The two closely related equations that help to explain the binding of macromolecules to ligands are called the Hill equation. It helps to quantify the interaction between various ligand binding sites.
Hill coefficient
It is used to describe the cooperativity of ligand binding. It can be positive and negative depending on the value of the Hill coefficient. If the value of the Hill coefficient is more than one then it exhibits positively cooperative binding and if it is less than one then it exhibits negatively cooperative binding. Then there is the noncooperative binding where the Hill coefficient value is one. As for the hemoglobin and myoglobin, the values are,
- Hill coefficient of hemoglobin is 2.7 - 3.
- Hill coefficient of myoglobin is 1.0.
Thus hemoglobin is positively cooperative and myoglobin exhibits noncooperative binding.
Learn more about hemoglobin:
brainly.com/question/15011428
#SPJ4
Material made in a nucleus made of DNA and other proteins is chromatin network
<span>The best place would be far away from a cliff and the worst would be right on top of a cliff or some sort of land such as a beach or directly beneath it. At anytime, gravity will cause mass wasting, in other words the rock and soil will just break apart.</span>
The answer would be Nucleic Acids
The purple spots on the colorless background of corn kernels observed by Barbara McClintock were the result of the transposition of the Ds elements out of the color gene.
<h3>What are the genetic elements found in corn?</h3>
- A transposable element is removed from one spot in the DNA and inserted into a different site in the DNA during the process of genetic transposition, which allows genes to shift their location on chromosomes.
- The first recognized genetic instability was caused by genetic transposition.
- The size of the tissue patch displaying the reversion phenotype increases as a reversion event happens earlier in the kernel development.
- Barbara McClintock saw purple dots on maize kernels with an otherwise colorless background.
- These spots were caused by the Ds components of the color gene being transposed.
- The wild-type (purple) phenotype manifests itself in cells where Ds from the color gene "C" sequence has been lost.
Hence, Barbara McClintock discovered purple patches on the colorless backdrop of maize kernels due to the transposition of the Ds elements out of the color gene.
To learn more about Transposition refer to:
brainly.com/question/13447171
#SPJ4