Step-by-step explanation:
It is given that the angels of a triangle have a sum of 180°. The angles of a rectangle have a sum of 360°. The angels of a pentagon have a sum of 540.
<u>Let me define the each terms.</u>
1. We know that each angle in a triangle is 60°, So there is a three angle in a regular triangle.
2. We know that each angle in a rectangle, is 90°, So there is a four angle in a regular rectangle.
Similarly,
- There is 8 angle in a regular octagon and each angle measurement is 135°.
So, sum of the angles of an octagon = 135° × 8
Sum of the angles of an octagon = 1080°
Therefore, the required sum of the angles of an octagon is 1080°
- Slope-Intercept Form: y = mx+b, with m = slope and b = y-intercept
So perpendicular lines have <u>slopes that are negative reciprocals</u> to each other, but firstly we need to find the slope of the original equation. The easiest method to find it is to convert this standard form into slope-intercept.
Firstly, subtract 3x on both sides of the equation: 
Next, divide both sides by -4 and your slope-intercept form of the original equation is 
Now looking at this equation, we see that the slope is 3/4. Now since our new line is perpendicular, this means that <em>its slope is -4/3.</em>
Now that we have the slope, plug that into the m variable and plug in (-4,-5) into the x and y coordinates to solve for the b variable as such:

<u>In short, your new equation is y = -4/3x - 10 1/3.</u>
Answer:
<h2>58°</h2>
Step-by-step explanation:
We will use the tangent function since we know the opposite and adjacent sides.
Tangent = opposite/adjacent
Tan(e) = 16/10
Tan(e) = 1.6
Use the inverse tangent function to find the angle.
Arctan (1.6) = 57.9946168
Rounding this we get: 58°
Answer:
Ray
Step-by-step explanation: