Ummm I’m not sure let me do the work
Input energy is: 200 joule
Output energy is: 100 joule
100/200*100=%50 efficiency
Answer:
Having a bigger angle above the horizontal
Explanation:
Applying the energy conservation theorem:

The kinetic energy is reduced because of the work done by the friction force.
The friction force is given by:

so the friction force depends on the Normal force, because the slide has an angle the normal force is given by:

So when the angle of the slide is bigger, the friction force decreases, for example:
for 45 degrees:

for 75 degrees:

as you can see if the angle is bigger above the horizontal, the friction force is reduced and so the work done by that force. We didn't have to change the height of the slide, so the potential gravitational energy remains the same.
Answer:
satisfaction, enjoyment and fair play
Answer:
The temperature required is near about 3 million kelvin
Explanation:
The brilliance of the star results from the nuclear reaction that take place in the core of the star and radiate a huge amount of thermal energy resulting from the fusion of hydrogen into helium.
For this reaction to take place, the temperature of the star's core must be near about 3 million kelvin.
The hydrogen atoms collide and starts and the energy from the collision results in the heating of the gas cloud. As the temperature comes to near about
, the nuclear fusion reaction takes place in the core of the gas cloud.
The huge amount of thermal energy from the nuclear reaction gives the gas cloud a brilliance resulting in a protostar.