A) 1 rev = 2π rad. Using this ratio, you can find the rad/s: 1160 rev/min x 2π rad/rev x 1 min/60 s = 121.5 rad/s
b) You can find linear speed from angular speed using this equation (note the radius is half the diameter given in the question): v = ωr = 121.5 rad/s x 1.175 m = 142.8 m/s
c) You can find centripetal acceleration using this equation: a = v^2/r = (142.8 m/s)^2 / 1.175 m = 17 355 m/s^2
Answer:
a An increase in the speed will lower the internal pressure
Explanation:
Bernoulli's fluid formula

where
P = Pressure
ρ = Density of fluid
g = Acceleration due to gravity
h = Height
v = Velocity of fluid
If there is no change in height then we get

According to the Bernoulli's principle when the speed of the fluid is larger in a region of streamline flow the pressure is smaller in that region. From the above equation it can be seen that increase in speed should simultaneously reduce pressure in order for their sum to be constant.
So the area under a velocity time graph is distance or displacement, if you have done calculus yet you will understand that if you take the integral of a velocity function then you end up with displacement. Thats for later understanding however.
So this appears to be a right triangle so we can find the area of a triangle as:
0.5bh = A
Since our area is 10 meters lets alter our formula a bit to fit the situation:
Our base here is time and our height is velocity so:
0.5tv = Δx
So we can read off the graph that our velocity at the end, or our final velocity appears to be near 2.0 m/s
So we have v, and Δx so lets isolate for time by dividing by v and 0.5
t = Δx / 0.5v
Now lets plug all that in:
t = 10 / 0.5(2)
t = 10 seconds
Hope this helped!