Answer:
375 KPa
Explanation:
From the question given above, the following data were obtained:
Initial pressure (P₁) = 125 KPa
Initial temperature (T₁) = 300 K
Final temperature (T₂) = 900 K
Final pressure (P₂) =?
The new (i.e final) pressure of the gas can be obtained as follow:
P₁/T₁ = P₂/T₂
125 / 300 = P₂ / 900
Cross multiply
300 × P₂ = 125 × 900
300 × P₂ = 112500
Divide both side by 300
P₂ = 112500 / 300
P₂ = 375 KPa
Thus, the new pressure of the gas is 375 KPa
1. Go to settings 2. Press on your Apple ID 3. Press on subscriptions then turn them off.
Answer:
Frequency = 
Wavenumber = 
Energy = 
Energy = 1.4579 eV
Energy = 
Explanation:
As we are given the wavelength = 850 nm
conversion used : 
So, wavelength is 
The relation between frequency and wavelength is shown below as:

Where, c is the speed of light having value = 
So, Frequency is:


Wavenumber is the reciprocal of wavelength.
So,


Also,

where, h is Plank's constant having value as 
So,


Also,

So,


Also,

So,


Answer:
the percent increase in the velocity of air is 25.65%
Explanation:
Hello!
The first thing we must consider to solve this problem is the continuity equation that states that the amount of mass flow that enters a system is the same as what should come out.
m1=m2
Now remember that mass flow is given by the product of density, cross-sectional area and velocity
(α1)(V1)(A1)=(α2)(V2)(A2)
where
α=density
V=velocity
A=area
Now we can assume that the input and output areas are equal
(α1)(V1)=(α2)(V2)

Now we can use the equation that defines the percentage of increase, in this case for speed

Now we use the equation obtained in the previous step, and replace values

the percent increase in the velocity of air is 25.65%