1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Wewaii [24]
3 years ago
6

Translate to an equation and sole: The quotient of h and 26 is -52

Mathematics
1 answer:
rusak2 [61]3 years ago
7 0
<h2>Answer:</h2><h2>h/26=-52</h2><h2>  *26=*26</h2><h2>h=-1352</h2><h2>Hence, h equals -1352 when solved in a equation.</h2><h2>Hope this helps!!! PLZ MARK BRAINLIEST!!!</h2>

You might be interested in
A countertop is in the shape of a trapezoid.
RideAnS [48]
Uhhhhh yes.?

love that for u
4 0
2 years ago
Two airlines offer special group rates to your school’s Spanish Club for a trip to Mexico City. Mexican Air airline offers a rou
Finger [1]

Answer:

a. The Mexican Airline offers a better deal for 9 students to travel.  

b. 10 students

Step-by-step explanation:

a. The Mexican Air airline offers a round trip airfare of $250 per person.

So, for 9 students the fare will be total $(250 × 9) = $2250

Now, the Fiesta airline offers a round trip airfare of $150 per person if the club agrees to pay a one-time group rate processing fee of $1000.

So, for 9 students the total fare will be = $[1000 + (150 × 9)] =$2350.

Therefore, the Mexican Airline offers a better deal for 9 students to travel.  (Answer)

b. Let for x students both the airline offers the same total costs.

Then we can write  

250x = 1000 + 150x {From the conditions given}

⇒ 100x = 1000

⇒ x = 10

So, if the number of students is 10, then only both the airlines will take same fare. (Answer)

8 0
3 years ago
A 6am one morning the temperature was -14 degrees by noon it rose 8 degrees and then rose another 2 degrees by 3pm. By 6pm the t
valentina_108 [34]

Answer:

-9 degrees

Step-by-step explanation:

-14 + 8 = -6

-6 + 2 = -4

-4 - 5 = -9

3 0
2 years ago
12.) Find the x-intercept and y intercept of the following equation.<br> 9x + 6y = -36
Alik [6]

Answer:

<em>T</em><em>h</em><em>e</em><em>v</em><em>a</em><em>l</em><em>u</em><em>e</em><em> </em><em>o</em><em>f</em><em> </em><em>x</em><em>-</em><em>i</em><em>n</em><em>t</em><em>e</em><em>r</em><em>c</em><em>e</em><em>p</em><em>t</em><em> </em><em>i</em><em>s</em><em> </em><em>0</em>

<em>a</em><em>n</em><em>d</em><em> </em><em>y</em><em> </em><em>i</em><em>n</em><em>t</em><em>e</em><em>r</em><em>c</em><em>e</em><em>p</em><em>t</em><em> </em><em>i</em><em>s</em><em>-</em><em>6</em><em>.</em>

Step-by-step explanation:

here,9x+6y=-36

9x = -36 - 6y

x=(-36 -6y)/9

x=(-12-2y)/9.........(i)

putting value of x in question

9[(-12-2y)/9]+6y=-36

-12-2y+6y= -36

-12+4y= -36

4y=-24

y=<em>-</em><em>6</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em>p</em><em>u</em><em>t</em><em>i</em><em>n</em><em>g</em><em> </em><em>v</em><em>a</em><em>l</em><em>u</em><em>e</em><em> </em><em>o</em><em>f</em><em> </em><em>x</em><em> </em><em>i</em><em>n</em><em> </em><em>e</em><em>q</em><em>u</em><em>a</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>(</em><em>i</em><em>)</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>x</em><em>=</em><em>(</em><em>-</em><em>1</em><em>2</em><em>-</em><em>2</em><em>y</em><em>)</em><em>/</em><em>9</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>x</em><em>=</em><em>(</em><em>-</em><em>1</em><em>2</em><em>-</em><em>2</em><em>×</em><em>-</em><em>6</em><em>)</em><em>/</em><em>9</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>x</em><em>=</em><em>0</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em>I</em><em> </em><em>h</em><em>a</em><em>v</em><em>e</em><em> </em><em>d</em><em>o</em><em>n</em><em>e</em><em> </em><em>y</em><em>o</em><em>u</em><em>r</em><em> </em><em>t</em><em>a</em><em>s</em><em>k</em><em>.</em><em> </em><em>B</em><em>u</em><em>t</em><em> </em><em>i</em><em> </em><em>t</em><em>h</em><em>i</em><em>n</em><em>k</em><em> </em><em>i</em><em>t</em><em> </em><em>w</em><em>i</em><em>l</em><em>l</em><em> </em><em>h</em><em>e</em><em>l</em><em>p</em><em> </em><em>y</em><em>o</em><em>u</em><em>.</em><em> </em><em>i</em><em>f</em><em> </em><em>i</em><em>t</em><em> </em><em>h</em><em>e</em><em>l</em><em>p</em><em>s</em><em> </em><em>p</em><em>l</em><em>e</em><em>a</em><em>s</em><em>e</em><em> </em><em>m</em><em>y</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em> </em><em>a</em><em>s</em><em> </em><em>b</em><em>r</em><em>a</em><em>i</em><em>n</em><em>l</em><em>i</em><em>e</em><em>s</em><em>t</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em>.</em><em> </em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>p</em><em>l</em><em>e</em><em>a</em><em>s</em><em>e</em><em> </em><em>d</em><em>o</em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em> </em><em>f</em><em>o</em><em>r</em><em> </em><em>m</em><em>y</em><em> </em><em>h</em><em>a</em><em>r</em><em>d</em><em> </em><em>w</em><em>o</em><em>r</em><em>k</em><em>.</em>

4 0
3 years ago
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
Other questions:
  • Solve the equation. 2/3-4x+7/2 = -9x+5/6 ​
    7·1 answer
  • Kate gets a paycheck twice a month. Every
    8·2 answers
  • I need help on this question plz
    10·1 answer
  • Find the arc length of the curve <img src="https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B1%7D%7B8%7D%20y%20%7B4%7D%20%2B%20%5Cfrac
    15·1 answer
  • What would be an equation for this
    12·2 answers
  • How to write 2350 million in standard form ?
    7·1 answer
  • Which graph represents a reflection of f(x) = 2(0.4)x across the y-axis? On a coordinate plane, an exponential function approach
    18·2 answers
  • Please help.<br><br> For math class
    14·1 answer
  • $3500 bottle over five years with an interest rate of 4% is how much interest ?and what is the total value?
    15·1 answer
  • An ordinary (falr) dle is a cube with the numbers 1 through 6 on the sides (represented by painted spots). Imagine that such a d
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!