Convention in algebra is that we use letters such as a, b, c, etc., for parameters and letters such as x, y z, and so on, for variables.
Thus the parameters here are a, b and k. k is the constant of proportionality.


- <u>We </u><u>have </u><u>given </u><u>two </u><u>linear </u><u>equations </u><u>that</u><u> </u><u>is </u><u>2x </u><u>-</u><u> </u><u>3y </u><u>=</u><u> </u><u>-</u><u>6</u><u> </u><u>and </u><u>x</u><u> </u><u>+</u><u> </u><u>3y </u><u>=</u><u> </u><u>1</u><u>2</u><u> </u><u>.</u>

- <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>value </u><u>of </u><u>x </u><u>and </u><u>y </u><u>by </u><u>elimination </u><u>method</u><u>. </u>



<u>Multiply </u><u>eq(</u><u> </u><u>2</u><u> </u><u>)</u><u> </u><u>by </u><u>2</u><u> </u><u>:</u><u>-</u>


<u>Subtract </u><u>eq(</u><u>1</u><u>)</u><u> </u><u>from </u><u>eq(</u><u>2</u><u>)</u><u> </u><u>:</u><u>-</u>





<u>Now</u><u>, </u><u> </u><u>Subsitute</u><u> </u><u>the </u><u>value </u><u>of </u><u>y </u><u>in </u><u>eq(</u><u> </u><u>1</u><u> </u><u>)</u><u>:</u><u>-</u>





Hence, The value of x and y is 2 and 10/3
24*7 = 168
(2*12)*7=168
168*2=336
336 Total sweets
Sum = 20(1-(1/4)^5) / (1-1/4) = 26.64
P + s = 200......p = 200 - s
20p + 15s = 3400
20(200 - s) + 15s = 3400
4000 - 20s + 15s = 3400
-20s + 15s = 3400 - 4000
-5s = - 600
s = -600/-5
s = 120 <=== there were 120 standard tickets sold
p + s = 200
p + 120 = 200
p = 200 - 120
p = 80 <=== there were 80 premium tickets sold