Answer:
Therefore the concentration of salt in the incoming brine is 1.73 g/L.
Step-by-step explanation:
Here the amount of incoming and outgoing of water are equal. Then the amount of water in the tank remain same = 10 liters.
Let the concentration of salt be a gram/L
Let the amount salt in the tank at any time t be Q(t).

Incoming rate = (a g/L)×(1 L/min)
=a g/min
The concentration of salt in the tank at any time t is =
g/L
Outgoing rate =



Integrating both sides

[ where c arbitrary constant]
Initial condition when t= 20 , Q(t)= 15 gram


Therefore ,
.......(1)
In the starting time t=0 and Q(t)=0
Putting t=0 and Q(t)=0 in equation (1) we get









Therefore the concentration of salt in the incoming brine is 1.73 g/L
Every day, Michael consumes 4 more ounces than the pretzels. Multiply 5 by 4 to recieve the answer:
4 x 5 = 20
So the answer is A.
Answer: There is 3.994% continuous growth rate per hour.
Step-by-step explanation:
Since we have given that
Initial bacteria = 2600
After two and a half hours,
Number of bacteria = 2873
We need to find the continuous growth rate per hour.
As we know the equation for continuous growth rate per hour.

Hence, there is 3.994% continuous growth rate per hour.
The answer is:
an=4000n+38,000
Sam has $42,000 one year after graduating. So when he graduates, he would have $38000.
Hope this helps!