Y= my+b
-2=0/3x -2
I’m actually not very sure about this but
Answer:
12 seconds.
Step-by-step explanation:
If you put it like 15/9 = 20/x, then cross multiply and divide you do 9 times 20 you get 180, then you divide 180 by 15 and you get 12. Hope this helps!
You can compute both the mean and second moment directly using the density function; in this case, it's

Then the mean (first moment) is
![E[X]=\displaystyle\int_{-\infty}^\infty x\,f_X(x)\,\mathrm dx=\frac1{80}\int_{670}^{750}x\,\mathrm dx=710](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20x%5C%2Cf_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac1%7B80%7D%5Cint_%7B670%7D%5E%7B750%7Dx%5C%2C%5Cmathrm%20dx%3D710)
and the second moment is
![E[X^2]=\displaystyle\int_{-\infty}^\infty x^2\,f_X(x)\,\mathrm dx=\frac1{80}\int_{670}^{750}x^2\,\mathrm dx=\frac{1,513,900}3](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle%5Cint_%7B-%5Cinfty%7D%5E%5Cinfty%20x%5E2%5C%2Cf_X%28x%29%5C%2C%5Cmathrm%20dx%3D%5Cfrac1%7B80%7D%5Cint_%7B670%7D%5E%7B750%7Dx%5E2%5C%2C%5Cmathrm%20dx%3D%5Cfrac%7B1%2C513%2C900%7D3)
The second moment is useful in finding the variance, which is given by
![V[X]=E[(X-E[X])^2]=E[X^2]-E[X]^2=\dfrac{1,513,900}3-710^2=\dfrac{1600}3](https://tex.z-dn.net/?f=V%5BX%5D%3DE%5B%28X-E%5BX%5D%29%5E2%5D%3DE%5BX%5E2%5D-E%5BX%5D%5E2%3D%5Cdfrac%7B1%2C513%2C900%7D3-710%5E2%3D%5Cdfrac%7B1600%7D3)
You get the standard deviation by taking the square root of the variance, and so
![\sqrt{V[X]}=\sqrt{\dfrac{1600}3}\approx23.09](https://tex.z-dn.net/?f=%5Csqrt%7BV%5BX%5D%7D%3D%5Csqrt%7B%5Cdfrac%7B1600%7D3%7D%5Capprox23.09)
Perimeter is adding all sides so the answer will be 12(pi) + 46, hope this helps!!
Answer:
x= -4
Step-by-step explanation:
3=8x-5(3x+5)
distribute
3=8x-15x-25
combime like factors
28= -7x
divide 28/ -7
x= -4