L
=
∫
t
f
t
i
√
(
d
x
d
t
)
2
+
(
d
y
d
t
)
2
d
t
. Since
x
and
y
are perpendicular, it's not difficult to see why this computes the arclength.
It isn't very different from the arclength of a regular function:
L
=
∫
b
a
√
1
+
(
d
y
d
x
)
2
d
x
. If you need the derivation of the parametric formula, please ask it as a separate question.
We find the 2 derivatives:
d
x
d
t
=
3
−
3
t
2
d
y
d
t
=
6
t
And we substitute these into the integral:
L
=
∫
√
3
0
√
(
3
−
3
t
2
)
2
+
(
6
t
)
2
d
t
And solve:
=
∫
√
3
0
√
9
−
18
t
2
+
9
t
4
+
36
t
2
d
t
=
∫
√
3
0
√
9
+
18
t
2
+
9
t
4
d
t
=
∫
√
3
0
√
(
3
+
3
t
2
)
2
d
t
=
∫
√
3
0
(
3
+
3
t
2
)
d
t
=
3
t
+
t
3
∣
∣
√
3
0
=
3
√
3
+
3
√
3
=6The arclength of a parametric curve can be found using the formula:
L
=
∫
t
f
t
i
√
(
d
x
d
t
)
2
+
(
d
y
d
t
)
2
d
t
. Since
x
and
y
are perpendicular, it's not difficult to see why this computes the arclength.
It isn't very different from the arclength of a regular function:
L
=
∫
b
a
√
1
+
(
d
y
d
x
)
2
d
x
. If you need the derivation of the parametric formula, please ask it as a separate question.
We find the 2 derivatives:
d
x
d
t
=
3
−
3
t
2
d
y
d
t
=
6
t
And we substitute these into the integral:
L
=
∫
√
3
0
√
(
3
−
3
t
2
)
2
+
(
6
t
)
2
d
t
And solve:
=
∫
√
3
0
√
9
−
18
t
2
+
9
t
4
+
36
t
2
d
t
=
∫
√
3
0
√
9
+
18
t
2
+
9
t
4
d
t
=
∫
√
3
0
√
(
3
+
3
t
2
)
2
d
t
=
∫
√
3
0
(
3
+
3
t
2
)
d
t
=
3
t
+
t
3
∣
∣
√
3
0
=
3
√
3
+
3
√
3
=
6
√
3
Be aware that arclength usually has a difficult function to integrate. Most integrable functions look like the above where a binomial is squared and adding the two terms will flip the sign of the binomial.
Be aware that arclength usually has a difficult function to integrate. Most integrable functions look like the above where a binomial is squared and adding the two terms will flip the sign of the binomial.
Answer: 3.14 *16.8*16.8*16.9=14977.3478
14977.3478= 14,977.35
Answer:
read below
Step-by-step explanation:
Alright, archtan /
tan
−
1
(
x
)
is the inverse of tangent. Tan is
sin
cos
. Like the inverse of sin, the inverse of tan is also restricted to quadrants 1 and 4.
Knowing this we are solving for the inverse of tan -1. We are basically being asked the question what angle/radian does tan(-1) equal. Using the unit circle we can see that tan(1)= pi/4.
Since the "Odds and Evens Identity" states that tan(-x) = -tan(x). Tan(-1)= -pi/4.
Knowing that tan is negative in quadrants 2 and 4. the answer is in either of those two quadrants. BUT!!! since inverse of tan is restricted to quadrants 1 and 4 we are left with the only answer -pi/4.
the answer is m=-3n-5/2 or n=2m+5/6
Option 1:
is the correct answer
Step-by-step explanation:
We can put the values of x in each option one by one and then compare the output to find the best option
So,
<u>For y = 5x+5:</u>
Putting x=1,2,3,4,5...

The values of x in the function are producing the output values of y, which means that the function for values given in the table is defined by: y= 5x+5
Hence,
Option 1:
is the correct answer
Keywords: Functions, variables
Learn more about functions at:
#LearnwithBrainly