MCE = 360 - (150 + 70 + 50)
mCE = 360 - 270
mCE = 90
<CDE = 1/2(mBE + mCE)
<CDE = 1/2(150 + 90)
<CDE = 1/2(240)
<CDE = 120
answer
<CDE = 120°
For a square and rectangle it is Area=length*width
9514 1404 393
Answer:
A. 3×3
B. [0, 1, 5]
C. (rows, columns) = (# equations, # variables) for matrix A; vector x remains unchanged; vector b has a row for each equation.
Step-by-step explanation:
A. The matrix A has a row for each equation and a column for each variable. The entries in each column of a given row are the coefficients of the corresponding variable in the equation the row represents. If the variable is missing, its coefficient is zero.
This system of equations has 3 equations in 3 variables, so matrix A has dimensions ...
A dimensions = (rows, columns) = (# equations, # variables) = (3, 3)
Matrix A is 3×3.
__
B. The second row of A represents the second equation:

The coefficients of the variables are 0, 1, 5. These are the entries in row 2 of matrix A.
__
C. As stated in part A, the size of matrix A will match the number of equations and variables in the system. If the number of variables remains the same, the number of rows of A (and b) will reflect the number of equations. (The number of columns of A (and rows of x) will reflect the number of variables.)
Wait so are the sides of the octagon 9 inches each or do we have to find that?
I believe it’s 180 or something to do with that