Answer is at the very end
Explanation:
Given parameters:
Mass of the asteroid = 10 x 10⁹kg
Distance between the asteroid = 850km
Unknown:
Force = ?
Solution:
We can predict the outcome of this reduction in distance between the two masses using the newton's law of universal gravitation.
The law states that "the gravitational force of attraction between two masses is directly proportional to the product of their masses and inversely proportional to the square of the distances between them".
Mathematically, we have;
F =
F is the gravitational force
G is the universal gravitational constant = 6.67 x 10⁻¹¹Nm²kg⁻²
m is the mass of the body
r is the distance between them.
From this, we know that as the separation increases, the force of gravitation will reduce since the mass is constant.
The distance between the two asteroids decreased from 1000km to 850km, this will increase the force of attraction between them and we expect the force to be higher than 6700N.
At 1000Km, force = 6700N,
since as the distance reduces the force increases, we expect the force to be about 9200N.
Let us verify this by plugging the values into the equation:
F =
F = 9200N
Answer:
it is absolutely right good
A substance that provides humans with their main source of energy would be; food.
Sulfurous emissions emitted in the atmosphere are carried by prevailing winds and cause acid rain in the Earth.
Sulfurous and nitric emissions in the atmosphere (mainly from the burning of fossil fuels, and partially from natural events), are transported by the winds and air currents, and they can travel for hundreds, or even thousands of kilometers, and they combine with the water, oxygen, and other particles, thus creating an acid rain.
In any given asexually reproducing species, the chromosome number is always the same. In sexually reproducing organisms, the number of chromosomes in the body (somatic) cells typically is diploid (2n; a pair of each chromosome), twice the haploid (1n) number found in the sex cells, or gametes.