1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kiruha [24]
3 years ago
14

I NEED HELP FAST PLEASE

Mathematics
1 answer:
ololo11 [35]3 years ago
4 0

Please Give me Brainliest, Thank You

You might be interested in
The graphs of three functions are shown.
satela [25.4K]

Answer:

  • The square root and quadratic function share a y-intercept.
  • The range of the square root and absolute value function are the same.

Step-by-step explanation:

Y-intercepts are the same when the curves meet the y-axis at the same point. That is true of the root and quadratic functions.

X-intercepts are the same when the curves meet the x-axis at the same point. None of these functions share an x-intercept.

The ranges of the functions are the same when they have the same vertical extent. The range of the quadratic is different from the range of the other two functions.

The absolute value and root functions have the same minimum (lower end of their range). That is the same as the maximum of the quadratic function.

__

The statements that match the graphs are ...

  • The square root and quadratic function share a y-intercept.
  • The range of the square root and absolute value function are the same.
7 0
3 years ago
Read 2 more answers
SIMPLIFY THE EXPRESSION -3(-5 + s)
Arturiano [62]

Answer

15 + (-3s) or 15 - 3s

Step-by-step explanation:

-3 times -5 is 15

-3 times s is -3s

8 0
2 years ago
PLEASE HELP WILL MARK BRAINLIEST
Nataliya [291]

Answer:

You may or may not need to include the units.

A = 18x - 18

P = 6x + 6

Graph is attached below. (2, 18)

Step-by-step explanation:

Substitute the information we need, "l" and "w", into the formulas.

l is for length, 6cm.

w is for width, (3x - 3)cm.

Use the formula for area of a rectangle.

A = lw

A = (6)(3x-3)cm²

A = (18x - 18)cm²  or 18x - 18

Use the formula for perimeter of a rectangle.

P = 2(l + w)

P = 2(6 + (3x - 3))cm

P = 2(3x + 3)cm

P = (6x + 6)cm  or 6x + 6

Linear equations are written in the form y = mx + b, so we do not need to factor or further simplify the formulas.

To graph, first turn the "m" value into a fraction form.

8 -> 8/1

6 -> 6/1

You need two points to graph each line.

For each equation, the first point is on the y-axis at the "b" value. Then use the "m" in the equation to count the number of units up (numerator) and to the right (denominator).

The solution is (2,18)

8 0
3 years ago
1. cot x sec4x = cot x + 2 tan x + tan3x
Mars2501 [29]
1. cot(x)sec⁴(x) = cot(x) + 2tan(x) + tan(3x)
    cot(x)sec⁴(x)            cot(x)sec⁴(x)
                   0 = cos⁴(x) + 2cos⁴(x)tan²(x) - cos⁴(x)tan⁴(x)
                   0 = cos⁴(x)[1] + cos⁴(x)[2tan²(x)] + cos⁴(x)[tan⁴(x)]
                   0 = cos⁴(x)[1 + 2tan²(x) + tan⁴(x)]
                   0 = cos⁴(x)[1 + tan²(x) + tan²(x) + tan⁴(4)]
                   0 = cos⁴(x)[1(1) + 1(tan²(x)) + tan²(x)(1) + tan²(x)(tan²(x)]
                   0 = cos⁴(x)[1(1 + tan²(x)) + tan²(x)(1 + tan²(x))]
                   0 = cos⁴(x)(1 + tan²(x))(1 + tan²(x))
                   0 = cos⁴(x)(1 + tan²(x))²
                   0 = cos⁴(x)        or         0 = (1 + tan²(x))²
                ⁴√0 = ⁴√cos⁴(x)      or      √0 = (√1 + tan²(x))²
                   0 = cos(x)         or         0 = 1 + tan²(x)
         cos⁻¹(0) = cos⁻¹(cos(x))    or   -1 = tan²(x)
                 90 = x           or            √-1 = √tan²(x)
                                                         i = tan(x)
                                                      (No Solution)

2. sin(x)[tan(x)cos(x) - cot(x)cos(x)] = 1 - 2cos²(x)
              sin(x)[sin(x) - cos(x)cot(x)] = 1 - cos²(x) - cos²(x)
   sin(x)[sin(x)] - sin(x)[cos(x)cot(x)] = sin²(x) - cos²(x)
                               sin²(x) - cos²(x) = sin²(x) - cos²(x)
                                         + cos²(x)              + cos²(x)
                                             sin²(x) = sin²(x)
                                           - sin²(x)  - sin²(x)
                                                     0 = 0

3. 1 + sec²(x)sin²(x) = sec²(x)
           sec²(x)             sec²(x)
      cos²(x) + sin²(x) = 1
                    cos²(x) = 1 - sin²(x)
                  √cos²(x) = √(1 - sin²(x))
                     cos(x) = √(1 - sin²(x))
               cos⁻¹(cos(x)) = cos⁻¹(√1 - sin²(x))
                                 x = 0

4. -tan²(x) + sec²(x) = 1
               -1               -1
      tan²(x) - sec²(x) = -1
                    tan²(x) = -1 + sec²
                  √tan²(x) = √(-1 + sec²(x))
                     tan(x) = √(-1 + sec²(x))
            tan⁻¹(tan(x)) = tan⁻¹(√(-1 + sec²(x))
                             x = 0
5 0
3 years ago
A. Semi-annually:<br> B. Quarterly:<br> C. Monthly:<br> Please help:)
Jobisdone [24]
Quarterly or monthly because semi annually is to soon do I think monthly
4 0
3 years ago
Other questions:
  • Which of the following constructions requires two folds when using the paper folding method?
    12·2 answers
  • Lol I hate these problems that's why I keep asking them.... thank you by the way.
    6·1 answer
  • What is the estimate answer and the exact answer of 17/10 ÷2 4/5
    12·1 answer
  • What is the horizontal asymptote of the function f(x)= -2x/x+1
    9·1 answer
  • Plz help me out with this and do show work I will be waiting.... btw u will be marked brainliest!!!!!! Fast plz
    10·1 answer
  • Solve this equation with a variable term on both sides. 5.1y = –0.3y – 21.6 What is the solution? y =
    10·2 answers
  • A triangle has a perimeter of 33cm. If the three sides of the triangle are n, 3n−4, and 3n−5, what is the length of each side?
    11·1 answer
  • 1. Miguel is playing a game in which a box contains four chips with numbers written on them. Two of the chips have the number 1,
    10·1 answer
  • Plz help, asap!!
    11·2 answers
  • In a department store a desk costs £120. In a sale the price in reduced by 10%. How much is the desk reduced by
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!