♂️♂️♂️♂️♂️♂️♂️♂️♂️♂️♂️♂️♂️♂️♂️♂️♂️♂️♂️♂️♂️♂️♂️♂️♂️♂️♂️♂️
Answer:
m = -6/5
Step-by-step explanation:
The points present are (-2,2) and (3,-4).
m = -4 - 2 / 3 - (-2)
m = -4 - 2 / 3 + 2
m = -6/5
(-5,6) (-5,-6) (4,-6)
I hope it helps you!!
The answer is Hx = ½ Wsin θ cos θ
The explanation for this is:
Analyzing the torques on the bar, with the hinge at the axis of rotation, the formula would be: ∑T = LT – (L/2 sin θ) W = 0
So, T = 1/2 W sin θ. Analyzing the force on the bar, we have: ∑fx = Hx – T cos θ = 0Then put T into the equation, we get:∑T = LT – (L/2 sin θ) W = 0
Answer: i) 1 - 9x² - 12x
ii) 17 - 3x²
iii) - 20 + 10x² - x⁴
<u>Step-by-step explanation:</u>
g(x) = 3x + 2 h(x) = 5 - x²
i) h(g(x))
h(3x + 2) = 5 - (3x + 2)²
= 5 - (9x² + 12x + 4)
= 5 - 9x² - 12x - 4
= 1 - 9x² - 12x
ii) g(h(x))
g(5 - x²) = 3(5 - x²) + 2
= 15 - 3x² + 2
= 17 - 3x²
iii) h(h(x))
h(5 - x²) = 5 - (5 - x²)²
= 5 - (25 - 10x² + x⁴)
= 5 - 25 + 10x² - x⁴
= -20 + 10x² - x⁴