Answer:
A variable is a letter, for example x, y or z, that represents an unspecified number.
6+x=12
To evaluate an algebraic expression, you have to substitute a number for each variable and perform the arithmetic operations. In the example above, the variable x is equal to 6 since 6 + 6 = 12.
If we know the value of our variables, we can replace the variables with their values and then evaluate the expression.
Step-by-step explanation:
6z+4x=?
Solution: Replace x with 3 and z with 2 to evaluate the expression.
6z+4x=?
6⋅2+4⋅3=?
12+12=24
Hope this helps @(^_^)@
The answer is in the image. We need 3.625 gallons to fill the tank.
Answer:
1 .4x2-9= 2x+3,2x-3
2 .16x2-1=4x-1,4x+1
3 .16x2-4=4(2x+1)(2x-1)
4 .4x2-1=(2x+1)(2x-1)
Step-by-step explanation:
16x² − 1 = (4x − 1)(4x + 1) ; 16x² − 4 = 4(2x + 1)(2x − 1); 4x² − 1 = (2x + 1)(2x − 1) ;
4x² − 9 = (2x + 3)(2x − 3)
16x² − 1 is the difference of squares. This is because 16x² is a perfect square, as is 1. To find the factors of the difference of squares, take the square root of each square; one factor will be the sum of these and the other will be the difference.
The square root of 16x² is 4x and the square root of 1 is 1; this gives us (4x-1)(4x+1).
16x² − 4 is also the difference of squares. The difference of 16x² is 4x and the square root of 4 is 2; this gives us (4x-2)(4x+2). However, we can also factor a 2 out of each of these binomials; this gives us
2(2x-1)(2)(2x+1) = 2(2)(2x-1)(2x+1) = 4(2x-1)(2x+1)
4x² − 1 is also the difference of squares. The square root of 4x² is 2x and the square root of 1 is 1; this gives us (2x-1)(2x+1).
4x² − 9 is also the difference of squares. The square root of 4x² is 2x and the square root of 9 is 3; this gives us (2x-3)(2x+3).
Answer:
A score of 150.25 is necessary to reach the 75th percentile.
Step-by-step explanation:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
A set of test scores is normally distributed with a mean of 130 and a standard deviation of 30.
This means that 
What score is necessary to reach the 75th percentile?
This is X when Z has a pvalue of 0.75, so X when Z = 0.675.




A score of 150.25 is necessary to reach the 75th percentile.