10 years, because In 5 years after 2008, 2013 you get new math books 5 more years you get another set of math books-2018, but 2008 plus 10 years you get science books which is also 2018 which is also when you get another set of math books. So the next year you get math books and science books shipped the same year is 2018. 2018-2008=10 so 10 years pass
Correct Question:
Which term could be put in the blank to create a fully simplified polynomial written in standard form?
![8x^3y^2 -\ [\ \ ] + 3xy^2 - 4y3](https://tex.z-dn.net/?f=8x%5E3y%5E2%20-%5C%20%5B%5C%20%5C%20%5D%20%2B%203xy%5E2%20-%204y3)
Options

Answer:

Step-by-step explanation:
Given
![8x^3y^2 -\ [\ \ ] + 3xy^2 - 4y^3](https://tex.z-dn.net/?f=8x%5E3y%5E2%20-%5C%20%5B%5C%20%5C%20%5D%20%2B%203xy%5E2%20-%204y%5E3)
Required
Fill in the missing gap
We have that:
![8x^3y^2 -\ [\ \ ] + 3xy^2 - 4y^3](https://tex.z-dn.net/?f=8x%5E3y%5E2%20-%5C%20%5B%5C%20%5C%20%5D%20%2B%203xy%5E2%20-%204y%5E3)
From the polynomial, we can see that the power of x starts from 3 and stops at 0 while the power of y is constant.
Hence, the variable of the polynomial is x
This implies that the power of x decreases by 1 in each term.
The missing gap has to its left, a term with x to the power of 3 and to its right, a term with x to the power of 1.
This implies that the blank will be filled with a term that has its power of x to be 2
From the list of given options, only
can be used to complete the polynomial.
Hence, the complete polynomial is:

Answer:
The graph of y = f(-x) is a reflection of the graph of y = f(x) in the x-axis. ⇒ False
The graph of y = -f(x) is a reflection of the graph of y = f(x) in the y-axis. ⇒ False
Step-by-step explanation:
<em>Let us explain the reflection about the axes</em>
- If a graph is reflected about the x-axis, then the y-coordinates of all points on it will opposite in sign
Ex: if a point (2, -3) is on the graph of f(x), and f(x) is reflected about the x-axis, then the point will change to (2, 3)
- That means reflection about the x-axis change the sign of y
- y = f(x) → reflection about x-axis → y = -f(x)
- If a graph is reflected about the y-axis, then the x-coordinates of all points on it will opposite in sign
Ex: if a point (-2, -5) is on the graph of f(x), and f(x) is reflected about the y-axis, then the point will change to (2, -5)
- That means reflection about the y-axis change the sign of x
- y = f(x) → reflection about y-axis → y = f(-x)
<em>Now let us answer our question</em>
The graph of y = f(-x) is a reflection of the graph of y = f(x) in the x-axis.
It is False because reflection about x-axis change sign of y
The graph of y = -f(x) is a reflection of the graph of y = f(x) in the x-axis
The graph of y = -f(x) is a reflection of the graph of y = f(x) in the y-axis.
It is False because reflection about y-axis change sign of x
The graph of y = f(-x) is a reflection of the graph of y = f(x) in the y-axis