Answer:
<h2>C. placing carrier proteins in the membrane.</h2>
Explanation:
If there is no barrier preventing molecules from moving molecules, then there will be large movement of molecules from an area of high concentration to an area of low concentration. This passive process is known as diffusion. The phospholipid bilayer of a cell's membrane works as a barrier to large molecules, ions, and most hydrophilic molecules. Whereas small hydrophobic molecules can pass freely through the phospholipid bilayer, other molecules and ions are transported across the cell membrane with the help of transport proteins. Some transport proteins, allowing hydrophilic molecules and ions to passively move through them and across the cell membrane.
Examples: carrier proteins and channel proteins.
Placing carrier proteins in the cell membrane will allow the molecule to reach equal concentrations on the both the sides of the membrane and maintain that way over long time. In contrast, transport proteins known as pumps will use cellular energy, usually in the form of ATP, to transport molecules.
Placing equal numbers of intracellularly directed and extracellularly directed pumps would also equalize the concentrations of a molecule long over time. Pumps are to transport molecules against their concentration gradient, such as the sodium-potassium pump continuously moves sodium ions out of a cell.
Through the use of carrier proteins, there is equalization of concentrations of a hydrophilic molecule. This equalize the numbers of molecules on the inside and outside of the cell, but the pumps would continue moving the molecule inward, eventually resulting in more molecules inside of the cell than out.
Explanation:
There is a massive variety of different types of fruit. The main separation between fruit types is between fleshy and dry fruits. Fleshy fruits have a juicy layer of tissue in the pericarp, seen in fruits such as oranges, tomatoes and grapes; whereas dry fruits do not
Hi! The answer is fulguration.
Hope this helps!
Payshence xoxo
Answer:
<em>The mushroom in the picture and the option choices are included in the attached image. below...</em>
The highlighted region of the mushroom in the picture represents the mushroom's <em>"Gills"</em>, and paticularlly the multicellular structure carrying the <em>Hymenium</em> called <em>"the basidiocarp"</em> aka basidioma; the Hymenium or underside of the mushrooms is comprised of vertical plates arranged radially, and if a cross section of this is exposed by making a straight cut through the basidiocarp on a microscope, it would appear as option: (A.
)
Answer:
C. Releases hormones to regulate the endocrine system
Explanation: