Answer:
See the argument below
Step-by-step explanation:
I will give the argument in symbolic form, using rules of inference.
First, let's conclude c.
(1)⇒a by simplification of conjunction
a⇒¬(¬a) by double negation
¬(¬a)∧(2)⇒¬(¬c) by Modus tollens
¬(¬c)⇒c by double negation
Now, the premise (5) is equivalent to ¬d∧¬h which is one of De Morgan's laws. From simplification, we conclude ¬h. We also concluded c before, then by adjunction, we conclude c∧¬h.
An alternative approach to De Morgan's law is the following:
By contradiction proof, assume h is true.
h⇒d∨h by addition
(5)∧(d∨h)⇒¬(d∨h)∧(d∨h), a contradiction. Hence we conclude ¬h.
The measures of spread include the range, quartiles and the interquartile range, variance and standard deviation. Let's consider each one by one.
<u>Interquartile Range: </u>
Given the Data -> First Quartile = 2, Third Quartile = 5
Interquartile Range = 5 - 2 = 3
<u>Range:</u> 8 - 1 = 7
<u>Variance: </u>
We start by determining the mean,

n = number of numbers in the set
Solving for the sum of squares is a long process, so I will skip over that portion and go right into solving for the variance.

5.3
<u>Standard Deviation</u>
We take the square root of the variance,

2.3
If you are not familiar with variance and standard deviation, just leave it.
Pi feet squared (I hope I helped!)
2814÷7= 402.
hope this helps!
ANSWER

EXPLANATION
The quadratic equation is:

Group variable terms:

Add the square of half, the coefficient of y to both sides.


The LHS us now a perfect square trinomial:

Take square root:


The first choice is correct.