Answer:
x=1
You solve for x by cross multyplying
They're both equal. The zero in 95.580 doesn't matter in this comparison.
<u>ANSWER:</u>
The solution set for the inequality 7x < 7(x - 2) is null set 
<u>SOLUTION:</u>
Given, inequality expression is 7x < 7 × (x – 2)
We have to give the solution set for above inequality expression in the interval notation form.
Now, let us solve the inequality expression for x.
Then, 7x < 7 × (x – 2)
7x < 7 × x – 2 × 7
7x < 7x – 14
7x – (7x – 14) < 0
7x – 7x + 14 < 0
0 + 14 < 0
14 < 0
Which is false, so there exists no solution for x which can satisfy the given equation.
So, the interval solution for given inequality will be null set
Hence, the solution set is 
a+b+c=0
[(a+b+c)^2=a^2+b^2+c^2+2ab+2ac+2bc]
[a^2+b^2+c^2+2ab+2ac+2bc=0]
[a^2+b^2+c^2=-(2ab+2ac+2bc)]
[a^2+b^2+c^2=-2(ab+ac+bc)] (i)
also
[a=-b-c]
[a^2=-ab-ac] (ii)
[-c=a+b]
[-bc=ab+b^2] (iii)
adding (ii) and (iii) ,we have
[a^2-bc=b^2-ac] (iv)
devide (i) by (iv)
[(a^2+b^2+c^2)/(a^2-bc)=(-2(ab+bc+ca))/(b^2-ac)]
None of them because they are not in order