we know that
A relationship between two variables, x, and y, represent an inverse variation if it can be expressed in the form
or 
Let
x-------> the pressure in PSI
y------> the volume of the gas in cubic inches
In this problem we have the point 
so

Find the constant k

substitute the values of x and y


the equation is

therefore
<u>the answer is</u>

We can model this situation with an arithmetic series.
we have to find the number of all the seats, so we need to sum up the number of seats in all of the 22 rows.
1st row: 23
2nd row: 27
3rd row: 31
Notice how we are adding 4 each time.
So we have an arithmetic series with a first term of 23 and a common difference of 4.
We need to find the total number of seats. To do this, we use the formula for the sum of an arithmetic series (first n terms):
Sₙ = (n/2)(t₁ + tₙ)
where n is the term numbers, t₁ is the first term, tₙ is the nth term
We want to sum up to 22 terms, so we need to find the 22nd term
Formula for general term of an arithmetic sequence:
tₙ = t₁ + (n-1)d,
where t1 is the first term, n is the term number, d is the common difference. Since first term is 23 and common difference is 4, the general term for this situation is
tₙ = 23 + (n-1)(4)
The 22nd term, which is the 22nd row, is
t₂₂ = 23 + (22-1)(4) = 107
There are 107 seats in the 22nd row.
So we use the sum formula to find the total number of seats:
S₂₂ = (22/2)(23 + 107) = 1430 seats
Total of 1430 seats.
If all the seats are taken, then the total sale profit is
1430 * $29.99 = $42885.70
Answer: The number of points added for r right answers is 12r. The number of points taken away for w wrong answers is 4w, so Olga's total points will be
... 12r -4w
To win, she needs this number to be more than 400. Your inequality is ...
... 12r -4w > 400
$4 dollars. My process was first, creating the matrix.
17= 2p + 3a p represents peaches and a for apricot
22= 4p + 2a