It would be 4 kg. Explanation: Bc each kg is .5 when rounded so u take .5 and multiply it by 8lbs
Answer:
72°
Step-by-step explanation:
From the information given:
A town planner wants to build two new streets, Elm Street and Garden Road, to connect parallel streets Maple Drive and Pine Avenue.
We are also told that there is a Trapezoid EFGH with EH as the Pine avenue and EF as the Elm street.
However, side FG and EH are parallel.
∠G = 108°
From the property of parallel lines :
since FG || EH
Then ∠G = ∠H = 108° (i.e corresponding angle will also be equal)
The required angle between Elm Street and Pine Avenue would be interior angles + 180° given that alternate angles are also equal.
The required angle between Elm Street and Pine Avenue = 180° - 108°
The required angle between Elm Street and Pine Avenue = 72°
Answer:

General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
- Terms/Coefficients
- Functions
- Function Notation
- Graphing
- Solving systems of equations
<u>Calculus</u>
Area - Integrals
Integration Rule [Reverse Power Rule]: 
Integration Rule [Fundamental Theorem of Calculus 1]: 
Integration Property [Addition/Subtraction]: ![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cint%20%7B%5Bf%28x%29%20%5Cpm%20g%28x%29%5D%7D%20%5C%2C%20dx%20%3D%20%5Cint%20%7Bf%28x%29%7D%20%5C%2C%20dx%20%5Cpm%20%5Cint%20%7Bg%28x%29%7D%20%5C%2C%20dx)
Area of a Region Formula: ![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5Eb_a%20%7B%5Bf%28x%29%20-%20g%28x%29%5D%7D%20%5C%2C%20dx)
Step-by-step explanation:
*Note:
<em>Remember that for the Area of a Region, it is top function minus bottom function.</em>
<u />
<u>Step 1: Define</u>
f(x) = x²
g(x) = x⁶
Bounded (Partitioned) by x-axis
<u>Step 2: Identify Bounds of Integration</u>
<em>Find where the functions intersect (x-values) to determine the bounds of integration.</em>
Simply graph the functions to see where the functions intersect (See Graph Attachment).
Interval: [-1, 1]
Lower bound: -1
Upper Bound: 1
<u>Step 3: Find Area of Region</u>
<em>Integration</em>
- Substitute in variables [Area of a Region Formula]:
![\displaystyle A = \int\limits^1_{-1} {[x^2 - x^6]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20A%20%3D%20%5Cint%5Climits%5E1_%7B-1%7D%20%7B%5Bx%5E2%20-%20x%5E6%5D%7D%20%5C%2C%20dx)
- [Area] Rewrite [Integration Property - Subtraction]:

- [Area] Integrate [Integration Rule - Reverse Power Rule]:

- [Area] Evaluate [Integration Rule - FTC 1]:

- [Area] Subtract:

Topic: AP Calculus AB/BC (Calculus I/II)
Unit: Area Under the Curve - Area of a Region (Integration)
Book: College Calculus 10e
The correct answer would be 2y^5
Well first of you need to know that on a straight line there should be 180 degrees. Also a triangle has 180 degrees in total. Now if this is to scale then you can always measure the angle BCA and explain how you took that away from 180 to get whatever. Assuming otherwise i don't know how one can actually complete this question without any measurements, at least one and it would be something anyone can complete. Even if you didn't have anything it should be a equilateral triangle or isosceles. That way you can work out the inside sides than the exterior. But since it's not, I'm not to sure.