1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DerKrebs [107]
4 years ago
14

The concentration determined for an unknown sample of hydrochloric acid by a student is 0.1354 M.According to the instructor’s i

nformation, the true molarity (M) of this solution is 0.1364 M. What is the percent error in this experiment? Round your answer to the nearest tenth.
Mathematics
1 answer:
Vikentia [17]4 years ago
6 0

Answer:

Step-by-step explanation:

S,wow,w,

You might be interested in
Help with num 3 please. thanks​
Alja [10]

Answer:

a)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)  \displaystyle \frac{dy}{dx} \bigg| \limits_{x = \frac{\pi}{2}} = -1

General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Unit Circle

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹  

Derivative Rule [Product Rule]:                                                                             \displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                 \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Trigonometric Differentiation

Logarithmic Differentiation

Step-by-step explanation:

a)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 - x}{\sqrt{1 + x^2}} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 - x}{\sqrt{1 + x^2}}} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{d}{dx}[\frac{1 - x}{\sqrt{1 + x^2}}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{(1 - x)'\sqrt{1 + x^2} - (1 - x)(\sqrt{1 + x^2})'}{(\sqrt{1 + x^2})^2}
  4. Basic Power Rule [Chain Rule]:                                                                     \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \frac{-\sqrt{1 + x^2} - (1 - x)(\frac{x}{\sqrt{x^2 + 1}})}{(\sqrt{1 + x^2})^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-\sqrt{x^2 + 1}}{x - 1} \cdot \bigg( \frac{x(x - 1)}{(x^2 + 1)^\bigg{\frac{3}{2}}} - \frac{1}{\sqrt{x^2 + 1}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{x + 1}{(x - 1)(x^2 + 1)}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = 0 [Derivative]:                                                                     \displaystyle \frac{dy}{dx} \bigg| \limit_{x = 0} = \frac{0 + 1}{(0 - 1)(0^2 + 1)}
  2. Evaluate:                                                                                                         \displaystyle \frac{dy}{dx} \bigg| \limits_{x = 0} = -1

b)

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle y = ln \bigg( \frac{1 + sinx}{1 - cosx} \bigg)

<u>Step 2: Differentiate</u>

  1. Logarithmic Differentiation [Chain Rule]:                                                     \displaystyle \frac{dy}{dx} = \frac{1}{\frac{1 + sinx}{1 - cosx}} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  2. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{d}{dx}[\frac{1 + sinx}{1 - cosx}]
  3. Quotient Rule:                                                                                               \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{(1 + sinx)'(1 - cosx) - (1 + sinx)(1 - cosx)'}{(1 - cosx)^2}
  4. Trigonometric Differentiation:                                                                       \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - 1]}{sin(x) + 1} \cdot \frac{cos(x)(1 - cosx) - sin(x)(1 + sinx)}{(1 - cosx)^2}
  5. Simplify:                                                                                                         \displaystyle \frac{dy}{dx} = \frac{-[cos(x) - sin(x) - 1]}{[sin(x) + 1][cos(x) - 1]}

<u>Step 3: Find</u>

  1. Substitute in <em>x</em> = π/2 [Derivative]:                                                                 \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = \frac{-[cos(\frac{\pi}{2}) - sin(\frac{\pi}{2}) - 1]}{[sin(\frac{\pi}{2}) + 1][cos(\frac{\pi}{2}) - 1]}
  2. Evaluate [Unit Circle]:                                                                                   \displaystyle \frac{dy}{dx} \bigg| \limit_{x = \frac{\pi}{2}} = -1

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

4 0
3 years ago
F(x)=2+3(2x+4)-8 is??
Vikki [24]

X = -6/5 I hope this helps

3 0
3 years ago
What is the value of x<br> 83<br> 58<br> 50<br> 70.5
coldgirl [10]

Answer:

58

Step-by-step explanation:

x =  \frac{141 - 25}{2}  = 58

6 0
2 years ago
"Five times a number" can be written as 5 x. <br><br><br> True or false?
mars1129 [50]
5x = five times x.
Not to be confused with X^5 (sometimes accidentally written as x5) which means x to the fifth power.
Hope I helped!
~ Zoe
8 0
4 years ago
line t has an equation of y=1/9x-9. Line u includes the point (4,1) and is parallel to line t. What is the equation of line u?
horrorfan [7]

Answer:

The equation of line 'U' is;

y = \frac{x}{9} + 5

Step-by-step explanation:

A line 'T' has an equation; y = \frac{1}{9}x - 9

A line 'U' passes through point (4,1) and is parallel to the line 'T'

We are to find the equation of line 'U'.

The slopes of two parallel lines are equal.

The slope of line 'T' is \frac{1}{9} and so the slope of line 'U' is \frac{1}{9}

Since line 'U' passes through point (4,1) , we choose another point (x,y) still on the line.

Slope = change in y ÷ change in x

\frac{1}{9} = \frac{y - 1}{x - 4}

Cross-multiplying gives;

9y - 9 = x - 4

9y = x - 4 + 9

9y = x + 5

y = \frac{1}{9} x + 5 (and this is the equation of line 'U')

8 0
3 years ago
Other questions:
  • Which transformation can be used to map one triangle onto the other select two options
    5·2 answers
  • A cube with sides numbered 1 to 6 is rolled 300 times. What is the best prediction for the number of times that a 1 or 2 would b
    13·1 answer
  • What is the surface area of the square pyramid represented by the net?
    10·1 answer
  • An exam will consist of True-False questions worth 3 points each and short essay questions worth 11 points each. Write an expres
    11·2 answers
  • In two or more complete sentences, describe the transformation(s) that take place on the parent function f(x)=log⁡(x) to achieve
    14·1 answer
  • Reasoning Graph the set of ordered pairs (0, 2). (1.4), (2,6). (3.8). Determine whether the relationship is a linear function Ex
    10·1 answer
  • The radius of a circle is 17 millimeters. What is the circle's circumference? Use 3.14 for ​.
    14·1 answer
  • HELP PLS !!I WILL GIVE BRAINLIEST!!!
    8·1 answer
  • PLEASE HELP <br> WILL GIVE BRAINLIEST AND 5.0 STAR RATING
    8·2 answers
  • Write a fraction that is more than 1/4
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!