1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna007 [38]
2 years ago
8

Please help!!!!!!!!!

Mathematics
1 answer:
meriva2 years ago
5 0

Answer:

n = 8

Step-by-step explanation:

(n−2) × 180  is the formula to find the interior angles of a polygon

(n−2) × 180 = 1080

Divide each side by 180

(n−2) × 180/180 = 1080/180

n-2 =6

Add 2 to each side

n-2+2 = 6+2

n = 8

You might be interested in
How to solve x^2+x-90=0 in completing the square method​
tigry1 [53]

Rearrange the equation by writing

x² + x - 90 = 0

x² + x = 90

x² + x + 1/4 = 90 + 1/4

Recall that (a + b)² = a² + 2ab + b². Then

x² + 2 • x/2 + (1/2)² = 361/4

(x + 1/2)² = 361/4

x + 1/2 = ± √(361/4)

x = -1/2 ± 19/2

x = 9   or   x = -10

3 0
2 years ago
Please answer right ill give brainliest if you don't know it dont submit an answerrr
Stella [2.4K]
Top 2nd one isn’t a function
5 0
3 years ago
Find the 14th term of the geometric sequence 10, 40, 160,...
elena55 [62]

Answer:

671,088,640

Step-by-step explanation:

find the pattern in the sequence, which is multiply by 4, until you get to the 14th term. ;)

7 0
3 years ago
Read 2 more answers
Given two points P(sinθ+2, tanθ-2) and Q(4sin²θ+4sinθcosθ+2acosθ, 3sinθ-2cosθ+a). Find constant "a" and the corresponding value
vodomira [7]

Answer:

\rm\displaystyle \displaystyle \displaystyle θ=    {60}^{ \circ} , {300}^{ \circ}

\rm \displaystyle a =    - \frac{   \sqrt{3} }{2}    - 1, \frac{\sqrt{3}}{2}  - 1

Step-by-step explanation:

we are given two <u>coincident</u><u> points</u>

\displaystyle  P( \sin(θ)+2,  \tan(θ)-2)   \: \text{and } \\  \displaystyle Q(4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2a \cos(θ), 3 \sin(θ)-2 \cos(θ)+a)

since they are coincident points

\rm \displaystyle  P( \sin(θ)+2,  \tan(θ)-2)    = \displaystyle Q(4 \sin ^{2} (θ)+4 \sin(θ )\cos(θ)+2a \cos(θ), 3 \sin(θ)-2 \cos(θ)+a)

By order pair we obtain:

\begin{cases}  \rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2a \cos(θ) =  \sin( \theta)   + 2 \\   \\  \displaystyle 3 \sin( \theta)  - 2  \cos( \theta)  + a =  \tan( \theta)  - 2\end{cases}

now we end up with a simultaneous equation as we have two variables

to figure out the simultaneous equation we can consider using <u>substitution</u><u> method</u>

to do so, make a the subject of the equation.therefore from the second equation we acquire:

\begin{cases}  \rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sinθ \cos(θ)+2a \cos(θ )=  \sin( \theta)   + 2 \\   \\  \boxed{\displaystyle  a =  \tan( \theta)  - 2 - 3 \sin( \theta)   +  2  \cos( \theta) } \end{cases}

now substitute:

\rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2 \cos(θ) \{\tan( \theta)  - 2 - 3 \sin( \theta)   +  2  \cos( \theta)   \}=  \sin( \theta)   + 2

distribute:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ)+4 \sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  - 6 \sin( \theta) \cos( \theta)    + 4  \cos ^{2} ( \theta)   =  \sin( \theta)   + 2

collect like terms:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ) - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)     + 4  \cos ^{2} ( \theta)   =  \sin( \theta)   + 2

rearrange:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ) + 4 \cos ^{2} ( \theta)  - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta) + =  \sin( \theta)   + 2

by <em>Pythagorean</em><em> theorem</em> we obtain:

\rm\displaystyle \displaystyle 4  - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  =  \sin( \theta)   + 2

cancel 4 from both sides:

\rm\displaystyle \displaystyle   - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  =  \sin( \theta)    - 2

move right hand side expression to left hand side and change its sign:

\rm\displaystyle \displaystyle   - 2\sin(θ) \cos(θ)+\sin(θ ) - 4\cos( \theta) + 2  =  0

factor out sin:

\rm\displaystyle \displaystyle  \sin (θ) (- 2 \cos(θ)+1) - 4\cos( \theta) + 2  =  0

factor out 2:

\rm\displaystyle \displaystyle  \sin (θ) (- 2 \cos(θ)+1)  + 2(- 2\cos( \theta) + 1 ) =  0

group:

\rm\displaystyle \displaystyle ( \sin (θ)   + 2)(- 2 \cos(θ)+1)  =  0

factor out -1:

\rm\displaystyle \displaystyle -  ( \sin (θ)   + 2)(2 \cos(θ) - 1)  =  0

divide both sides by -1:

\rm\displaystyle \displaystyle   ( \sin (θ)   + 2)(2 \cos(θ) - 1)  =  0

by <em>Zero</em><em> product</em><em> </em><em>property</em> we acquire:

\begin{cases}\rm\displaystyle \displaystyle   \sin (θ)   + 2 = 0 \\ \displaystyle2 \cos(θ) - 1=  0 \end{cases}

cancel 2 from the first equation and add 1 to the second equation since -1≤sinθ≤1 the first equation is false for any value of theta

\begin{cases}\rm\displaystyle \displaystyle   \sin (θ)     \neq  - 2 \\ \displaystyle2 \cos(θ) =  1\end{cases}

divide both sides by 2:

\rm\displaystyle \displaystyle \displaystyle \cos(θ) =   \frac{1}{2}

by unit circle we get:

\rm\displaystyle \displaystyle \displaystyle θ=    {60}^{ \circ} , {300}^{ \circ}

so when θ is 60° a is:

\rm \displaystyle a =  \tan(  {60}^{ \circ} )  - 2 - 3 \sin(  {60}^{ \circ} )   +  2  \cos(  {60}^{ \circ} )

recall unit circle:

\rm \displaystyle a =   \sqrt{3}  - 2 -  \frac{ 3\sqrt{3} }{2}   +  2   \cdot  \frac{1}{2}

simplify which yields:

\rm \displaystyle a =    - \frac{   \sqrt{3} }{2}    - 1

when θ is 300°

\rm \displaystyle a =  \tan(  {300}^{ \circ} )  - 2 - 3 \sin(  {300}^{ \circ} )   +  2  \cos(  {300}^{ \circ} )

remember unit circle:

\rm \displaystyle a =  -  \sqrt{3}   - 2  +   \frac{3\sqrt{ 3} }{2}  +  2   \cdot  \frac{1}{2}

simplify which yields:

\rm \displaystyle a = \frac{ \sqrt{3} }{2} - 1

and we are done!

disclaimer: also refer the attachment I did it first before answering the question

5 0
3 years ago
Please help ASAP! Correct answer only! This assignment is due today.
astra-53 [7]

Answer:

<em>Probability ≈ 0.0714</em>

Step-by-step explanation:

Consider permutation and combination;

Total Combinations - 8C4,\\8C4 = 8! / 4! * ( 8 - 4 )!,\\8 * 7 * 6 * 5 / 4!,\\\\Total Combinations = 70,\\\\Combinations of Dance Classes - 5C4,\\5C4 = 5! / 4! * ( 5 - 4 )!,\\5 * 4 * 3 * 2 * 1 / 4 * 3 * 2 * 1,\\\\Dance Classes = 5,\\\\Probability - 5 / 70 = 0.0714,\\Conclusion; Probability = ( About ) 0.0714

5 0
3 years ago
Other questions:
  • A mountain road is 5 miles long and gains elevation at a constant rate. After 2 miles, the elevation is 5500 feet above sea leve
    13·2 answers
  • Marylou is blowing up a beach ball. The package says that the ball has a diameter of 18 inches. What is the volume of the beach
    8·2 answers
  • 1/2r -3= 3 (4-3/2r) solve for r
    7·1 answer
  • what transformation has changed the parent function f(x) =log3x to its new appearance shown in the graph below
    6·2 answers
  • 46 divided by the second power of 10
    11·1 answer
  • 3. f(x) =(x-1)(x2+2) then f'() :
    14·1 answer
  • Order these decimals greatest to least 0.2 ; -0.4 ; -4.5
    6·1 answer
  • 32000 grams to tonnes
    10·2 answers
  • Susana walks 1/4 of a mile every thirty<br> minutes. How far did she walk in 1<br> hour?
    10·1 answer
  • a. Morning rain showers dropped 1/3 of an inch of rain. Later that day, another storm passed through and dropped 1/8 inch of rai
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!