The way I would look at it is that Sophia types 15 words per minute faster than Patty so every minute Sophia is 15 minutes closer to what Patty has done. 510/15=34 so after 34 minutes Sophia will have caught up to Patty
Step One
Multiply both sides by 80
7/8(x - 1/2)*80 = (-49/80) * 80
Step Two
7(x - 1/2 ) * 10 = - 49 Divide both sides by 7
(x - 1/2) * 10 = -49/7
(x - 1/2) * 10 = - 7 Remove the brackets on the left.
10x - (1/2)*10 = -7
10x - 5 = - 7 Add 5 to both sides.
10x = -7 + 5
10x = -2 Divide by 10
x = -2/10
x = - 0.2
Step Three
Check
We better check this one.
7/8*(-0.2 - 1/2)
7/8* (-.2 - 0.5)
7/8* (-0.7)
- 4.9/8 Now you can do one of two things. The easiest and simplest is to multiply top and bottom by 10
-4.9*10 / 8 * 10
-49 / 80 Which is the same as the right hand side.
The correct matches are as follows:
<span>Line Segment
</span>E) part of a line that has two endpoints<span>
Plane
</span>D) a flat surface that extends infinitely and has no thickness<span>
Perpendicular Lines
</span>B) two lines that intersect at 90° angles<span>
Line
</span>A) a series of points that extend in two directions without end<span>
Parallel Lines
</span>C) lines that lie in the same plane and do not intersect
Hope this answers the question. Have a nice day.
Answer:
![\displaystyle y' = \frac{-2}{x \ln (10)[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B-2%7D%7Bx%20%5Cln%20%2810%29%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Addition/Subtraction]: ![\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%20%2B%20g%28x%29%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bg%28x%29%5D)
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Quotient Rule]: ![\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5B%5Cfrac%7Bf%28x%29%7D%7Bg%28x%29%7D%20%5D%3D%5Cfrac%7Bg%28x%29f%27%28x%29-g%27%28x%29f%28x%29%7D%7Bg%5E2%28x%29%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify.</em>

<u>Step 2: Differentiate</u>
- [Function] Derivative Rule [Quotient Rule]:
![\displaystyle y' = \frac{[\log (x) - 2][\log (x)]' - [\log (x) - 2]'[\log (x)]}{[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5B%5Clog%20%28x%29%20-%202%5D%5B%5Clog%20%28x%29%5D%27%20-%20%5B%5Clog%20%28x%29%20-%202%5D%27%5B%5Clog%20%28x%29%5D%7D%7B%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
- Rewrite [Derivative Rule - Addition/Subtraction]:
![\displaystyle y' = \frac{[\log (x) - 2][\log (x)]' - [\log (x)' - 2'][\log (x)]}{[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5B%5Clog%20%28x%29%20-%202%5D%5B%5Clog%20%28x%29%5D%27%20-%20%5B%5Clog%20%28x%29%27%20-%202%27%5D%5B%5Clog%20%28x%29%5D%7D%7B%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
- Logarithmic Differentiation:
![\displaystyle y' = \frac{[\log (x) - 2]\frac{1}{\ln (10)x} - [\frac{1}{\ln (10)x} - 2'][\log (x)]}{[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5B%5Clog%20%28x%29%20-%202%5D%5Cfrac%7B1%7D%7B%5Cln%20%2810%29x%7D%20-%20%5B%5Cfrac%7B1%7D%7B%5Cln%20%2810%29x%7D%20-%202%27%5D%5B%5Clog%20%28x%29%5D%7D%7B%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
- Derivative Rule [Basic Power Rule]:
![\displaystyle y' = \frac{[\log (x) - 2]\frac{1}{\ln (10)x} - \frac{1}{\ln (10)x}[\log (x)]}{[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5B%5Clog%20%28x%29%20-%202%5D%5Cfrac%7B1%7D%7B%5Cln%20%2810%29x%7D%20-%20%5Cfrac%7B1%7D%7B%5Cln%20%2810%29x%7D%5B%5Clog%20%28x%29%5D%7D%7B%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
- Simplify:
![\displaystyle y' = \frac{\frac{\log (x) - 2}{\ln (10)x} - \frac{\log (x)}{\ln (10)x}}{[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5Cfrac%7B%5Clog%20%28x%29%20-%202%7D%7B%5Cln%20%2810%29x%7D%20-%20%5Cfrac%7B%5Clog%20%28x%29%7D%7B%5Cln%20%2810%29x%7D%7D%7B%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
- Simplify:
![\displaystyle y' = \frac{\frac{-2}{\ln (10)x}}{[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B%5Cfrac%7B-2%7D%7B%5Cln%20%2810%29x%7D%7D%7B%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
- Rewrite:
![\displaystyle y' = \frac{-2}{x \ln (10)[\log (x) - 2]^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20y%27%20%3D%20%5Cfrac%7B-2%7D%7Bx%20%5Cln%20%2810%29%5B%5Clog%20%28x%29%20-%202%5D%5E2%7D)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Answer:
80
Step-by-step explanation:
its because of addition