1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fantom [35]
4 years ago
15

The Neva River in St. Petersburg, Russia, is 74 km long. How long is it on a map drawn to a scale of 1:2,000,000?

Mathematics
2 answers:
mina [271]4 years ago
6 0

Answer:

3.7

Step-by-step explanation:

a_sh-v [17]4 years ago
3 0
Is there a type of formula you use for scale.
You might be interested in
Sophia types 75 words per minute and is just starting to write a term paper . patty already has 510 words written and types at a
iren2701 [21]
The way I would look at it is that Sophia types 15 words per minute faster than Patty so every minute Sophia is 15 minutes closer to what Patty has done. 510/15=34 so after 34 minutes Sophia will have caught up to Patty
4 0
4 years ago
What is the solution to the equation 7/8 (x-1/2)= -49/80
Whitepunk [10]
Step One 
Multiply both sides by 80
7/8(x - 1/2)*80 = (-49/80) * 80

Step Two
7(x - 1/2 ) * 10 = - 49                Divide both sides by  7
(x - 1/2) * 10 = -49/7   
(x - 1/2) * 10 = - 7                       Remove the brackets on the left.
10x - (1/2)*10 = -7
10x - 5 = - 7                                Add 5 to both sides.
10x = -7 + 5
10x = -2                                   Divide by 10
x = -2/10 
x = - 0.2

Step Three
Check
We better check this one.
7/8*(-0.2 - 1/2)
7/8* (-.2 - 0.5)
7/8* (-0.7)   
- 4.9/8 Now you can do one of two things. The easiest and simplest is to multiply top and bottom by 10

-4.9*10 / 8 * 10
-49 / 80 Which is the same as the right hand side.
8 0
3 years ago
Match Term Definition
Levart [38]
The correct matches are as follows:

<span>Line Segment 
</span>E) part of a line that has two endpoints<span>

Plane 
</span>D) a flat surface that extends infinitely and has no thickness<span>

Perpendicular Lines 
</span>B) two lines that intersect at 90° angles<span>

Line 
</span>A) a series of points that extend in two directions without end<span>

Parallel Lines 
</span>C) lines that lie in the same plane and do not intersect

Hope this answers the question. Have a nice day.
4 0
3 years ago
Read 2 more answers
Pls Help - Calc. HW dy/dx problem
GREYUIT [131]

Answer:

\displaystyle y' = \frac{-2}{x \ln (10)[\log (x) - 2]^2}

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Quotient Rule]:                                                                           \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle y = \frac{\log (x)}{\log (x) - 2}

<u>Step 2: Differentiate</u>

  1. [Function] Derivative Rule [Quotient Rule]:                                                 \displaystyle y' = \frac{[\log (x) - 2][\log (x)]' - [\log (x) - 2]'[\log (x)]}{[\log (x) - 2]^2}
  2. Rewrite [Derivative Rule - Addition/Subtraction]:                                       \displaystyle y' = \frac{[\log (x) - 2][\log (x)]' - [\log (x)' - 2'][\log (x)]}{[\log (x) - 2]^2}
  3. Logarithmic Differentiation:                                                                         \displaystyle y' = \frac{[\log (x) - 2]\frac{1}{\ln (10)x} - [\frac{1}{\ln (10)x} - 2'][\log (x)]}{[\log (x) - 2]^2}
  4. Derivative Rule [Basic Power Rule]:                                                             \displaystyle y' = \frac{[\log (x) - 2]\frac{1}{\ln (10)x} - \frac{1}{\ln (10)x}[\log (x)]}{[\log (x) - 2]^2}
  5. Simplify:                                                                                                         \displaystyle y' = \frac{\frac{\log (x) - 2}{\ln (10)x} - \frac{\log (x)}{\ln (10)x}}{[\log (x) - 2]^2}
  6. Simplify:                                                                                                         \displaystyle y' = \frac{\frac{-2}{\ln (10)x}}{[\log (x) - 2]^2}
  7. Rewrite:                                                                                                         \displaystyle y' = \frac{-2}{x \ln (10)[\log (x) - 2]^2}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

8 0
2 years ago
A ladder 20m leans against an electric pole. if the ladder makes an angle of 60 degrees with the ground find the highest of the
Svetradugi [14.3K]

Answer:

80

Step-by-step explanation:

its because of addition

5 0
3 years ago
Other questions:
  • What is -5x/x? <br> a) -5x with the exponent of 2 <br> b) -5
    15·2 answers
  • If f(x) = 2x + 3 and g(x) = x2 + 1,find f(g(3)).<br><br> A 23<br> B47 <br> C82 <br> D90
    9·1 answer
  • Look at the relationship between a and b.
    11·1 answer
  • Write the equation of the line that is perpendicular to y = 4 x − 8 y=4x-8 and passes through the point ( 4 , 3 ) (4,3)
    8·1 answer
  • D is no because if they translate the triangles on top of each other they do not match
    5·1 answer
  • -4x-2y=-12 <br> 4x+8y=-24<br> Someone help me solve systems of equations by elimination please!
    10·1 answer
  • Heyyyyy help pls
    12·2 answers
  • This Question: 1 pt Find the sum of the sequence. 47 +48 +49 +50 + ... + 136 The sum is Enter your answer in the answer box.
    9·2 answers
  • 26 = 2 * 2 * 2 * 2 * 2 x 2​
    7·2 answers
  • Solve square root of x+1 =4
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!