Are we talking about edges or the physical sides of the triangle?
If edges (corners / angles of the triangle), then no, because it doesn’t add up to 180. I don’t think the measurements of the sides matter, tho.
Given:
Consider the expression are
1) 
2) ![\sqrt[3]{-8}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-8%7D)
3) 
4) ![\sqrt[3]{27}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B27%7D)
To find:
The simplified form of each expression.
Solution:
1. We have,


Therefore, the value of this expression is 6.
2. We have,
![\sqrt[3]{-8}=(-8)^{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-8%7D%3D%28-8%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D)
![\sqrt[3]{-8}=((-2)^3)^{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-8%7D%3D%28%28-2%29%5E3%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D)
![\sqrt[3]{-8}=(-2)^{\frac{3}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-8%7D%3D%28-2%29%5E%7B%5Cfrac%7B3%7D%7B3%7D%7D)
![\sqrt[3]{-8}=-2](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B-8%7D%3D-2)
Therefore, the value of this expression is -2.
3. We have,


Therefore, the value of this expression is -10.
4. We have,
![\sqrt[3]{27}=(27)^{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B27%7D%3D%2827%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D)
![\sqrt[3]{27}=(3^3)^{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B27%7D%3D%283%5E3%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D)
![\sqrt[3]{27}=(3)^{\frac{3}{3}}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B27%7D%3D%283%29%5E%7B%5Cfrac%7B3%7D%7B3%7D%7D)
![\sqrt[3]{27}=3](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B27%7D%3D3)
Therefore, the value of this expression is 3.
Step-by-step explanation:
please complete your question
This is a problem of Standard Normal distribution.
We have mean= 12 grams
Standard Deviation = 2.5 grams
First we convert 8.5 to z score. 8.5 converted to z score for given mean and standard deviation will be:

So, from standard normal table we need to find the probability of z score to be less than -1.4. The probability comes out to be 0.0808
Thus, the <span>
probability that the strawberry weighs less than 8.5 grams is 0.0808</span>
55336533223885848848485858