Hello!
datos:
Molarity = 
ps: The ionization constant of the nitric acid is strong (100% ionized in water) or completely dissociates in water, so the pH will be:
![pH = - log\:[H_3O^+]](https://tex.z-dn.net/?f=%20pH%20%3D%20-%20log%5C%3A%5BH_3O%5E%2B%5D%20)
![pH = - log\:[2*10^{-4}]](https://tex.z-dn.net/?f=%20pH%20%3D%20-%20log%5C%3A%5B2%2A10%5E%7B-4%7D%5D%20)



Note:. The pH <7, then we have an acidic solution.
I Hope this helps, greetings ... DexteR!
Answer:
b- The heat capacity ratio increases but output temperature don’t change
Explanation:
The heat capacity is the amount of energy required to raise the temperature of a body, by 1 degree. On the other hand, the specific heat capacity is the amount of heat required to raise the temperature of a of unit mass of a material by 1 degree.
Heat capacity is an extensive property meaning its value depends on the amount of material. Specific heat capacity is found by dividing heat capacity by the mass of the sample, thus making it independent of the amount (intensive property). So if the specific heat capacity increases and the mass of the sample remains the same, the heat capacity must increase too. Because of that options c and d that say that heat capacity reamins same are INCORRECT.
On the other hand, in which has to be with options a and b both say that the heat capacity increases which is correct, but about the output temperatures what happens is that if we increase the specific heat capacity of both fluids that are involved in a process of heat exchange in the same value, the value of the output temperatures do not change so only option a is CORRECT.
Answer:
Hydrogen
Explanation:
Hydrogen can never be central atom despite its low electronegativity
Answer:
Explanation:
In a chemical formula, the oxidation state of transition metals can be determined by establishing the relationships between the electrons gained and that which is lost by an atom.
We know that for compounds to be formed, atoms would either lose, gain or share electrons between one another.
The oxidation state is usually expressed using the oxidation number and it is a formal charge assigned to an atom which is present in a molecule or ion.
To ascertain the oxidation state, we have to comply with some rules:
- The algebraic sum of all oxidation numbers of an atom in a neutral compound is zero.
- The algebraic sum of all the oxidation numbers of all atoms in an ion containing more than one kind of atom is equal to the charge on the ion.
For example, let us find the oxidation state of Cr in Cr₂O₇²⁻
This would be: 2x + 7(-2) = -2
x = +6
We see that the oxidation number of Cr, a transition metal in the given ion is +6.
Answer: The momentum of the child and milk together is 58.125 kg.m/s
Explanation:
Momentum is defined as the product of object's mass and velocity.
Mathematically,

where, p = momentum
m = mass of the object
v = velocity of the object
In the given question, we are given that a child of mass 21.0 kg is carrying a gallon of milk having mass 2.25 kg and running with a velocity of 2.5 m/s. Hence, the momentum by both milk and child will be:
....(1)
Given:

Putting values in equation 1, we get:

Hence, the momentum of the child and milk together is 58.125 kg.m/s